Label-set impact on deep learning-based prostate segmentation on MRI

被引:6
作者
Meglic, Jakob [1 ,2 ]
Sunoqrot, Mohammed R. S. [1 ,3 ]
Bathen, Tone Frost [1 ,3 ]
Elschot, Mattijs [1 ,3 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Circulat & Med Imaging, N-7030 Trondheim, Norway
[2] Univ Ljubljana, Fac Med, Ljubljana 1000, Slovenia
[3] Trondheim Reg & Univ Hosp, St Olavs Hosp, Dept Radiol & Nucl Med, N-7030 Trondheim, Norway
关键词
Label; Deep learning; Segmentation; Prostate; MRI; VARIABILITY; CHALLENGE; IMAGES; GLAND;
D O I
10.1186/s13244-023-01502-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background Prostate segmentation is an essential step in computer-aided detection and diagnosis systems for prostate cancer. Deep learning (DL)-based methods provide good performance for prostate gland and zones segmentation, but little is known about the impact of manual segmentation (that is, label) selection on their performance. In this work, we investigated these effects by obtaining two different expert label-sets for the PROSTATEx I challenge training dataset (n = 198) and using them, in addition to an in-house dataset (n = 233), to assess the effect on segmentation performance. The automatic segmentation method we used was nnU-Net. Results The selection of training/testing label-set had a significant (p < 0.001) impact on model performance. Furthermore, it was found that model performance was significantly (p < 0.001) higher when the model was trained and tested with the same label-set. Moreover, the results showed that agreement between automatic segmentations was significantly (p < 0.0001) higher than agreement between manual segmentations and that the models were able to outperform the human label-sets used to train them. Conclusions We investigated the impact of label-set selection on the performance of a DL-based prostate segmentation model. We found that the use of different sets of manual prostate gland and zone segmentations has a measurable impact on model performance. Nevertheless, DL-based segmentation appeared to have a greater inter-reader agreement than manual segmentation. More thought should be given to the label-set, with a focus on multicenter manual segmentation and agreement on common procedures. Critical relevance statement Label-set selection significantly impacts the performance of a deep learningbased prostate segmentation model. Models using different label-set showed higher agreement than manual segmentations.
引用
收藏
页数:10
相关论文
共 28 条
[1]   PROSTATEx Challenges for computerized classification of prostate lesions from multiparametric magnetic resonance images [J].
Armato, Samuel G., II ;
Huisman, Henkjan ;
Drukker, Karen ;
Hadjiiski, Lubomir ;
Kirby, Justin S. ;
Petrick, Nicholas ;
Redmond, George ;
Giger, Maryellen L. ;
Cha, Kenny ;
Mamonov, Artem ;
Kalpathy-Cramer, Jayashree ;
Farahani, Keyvan .
JOURNAL OF MEDICAL IMAGING, 2018, 5 (04)
[2]   Variability of manual segmentation of the prostate in axial T2-weighted MRI: A multi-reader study [J].
Becker, Anton S. ;
Chaitanya, Krishna ;
Schawkat, Khoschy ;
Muehlematter, Urs J. ;
Hoetker, Andreas M. ;
Konukoglu, Ender ;
Donati, Olivio F. .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 121
[3]   Unet based Xception Model for Prostate Cancer Segmentation from MRI Images [J].
Chahal, Ekam Singh ;
Patel, Aarya ;
Gupta, Ayush ;
Purwar, Archana ;
Dhanalekshmi, G. .
MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (26) :37333-37349
[4]   Patient Specific Prostate Segmentation in 3-D Magnetic Resonance Images [J].
Chandra, Shekhar S. ;
Dowling, Jason A. ;
Shen, Kai-Kai ;
Raniga, Parnesh ;
Pluim, Josien P. W. ;
Greer, Peter B. ;
Salvado, Olivier ;
Fripp, Jurgen .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (10) :1955-1964
[5]   Quality control and whole-gland, zonal and lesion annotations for the PROSTATEx challenge public dataset [J].
Cuocolo, Renato ;
Stanzione, Arnaldo ;
Castaldo, Anna ;
De Lucia, Davide Raffaele ;
Imbriaco, Massimo .
EUROPEAN JOURNAL OF RADIOLOGY, 2021, 138
[6]  
Ellis RJ, 2022, Intelligence-Based Medicine, V6, P100068, DOI [10.1016/j.ibmed.2022.100068, 10.1016/j.ibmed.2022.100068, DOI 10.1016/J.IBMED.2022.100068]
[7]   Interreader Variability of Prostate Imaging Reporting and Data System Version 2 in Detecting and Assessing Prostate Cancer Lesions at Prostate MRI [J].
Greer, Matthew D. ;
Shih, Joanna H. ;
Lay, Nathan ;
Barrett, Tristan ;
Bittencourt, Leonardo ;
Borofsky, Samuel ;
Kabakus, Ismail ;
Law, Yan Mee ;
Marko, Jamie ;
Shebel, Haytham ;
Merino, Maria J. ;
Wood, Bradford J. ;
Pinto, Peter A. ;
Summers, Ronald M. ;
Choyke, Peter L. ;
Turkbey, Baris .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 212 (06) :1197-1204
[8]   Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets [J].
Heimann, Tobias ;
van Ginneken, Bram ;
Styner, Martin A. ;
Arzhaeva, Yulia ;
Aurich, Volker ;
Bauer, Christian ;
Beck, Andreas ;
Becker, Christoph ;
Beichel, Reinhard ;
Bekes, Gyoergy ;
Bello, Fernando ;
Binnig, Gerd ;
Bischof, Horst ;
Bornik, Alexander ;
Cashman, Peter M. M. ;
Chi, Ying ;
Cordova, Andres ;
Dawant, Benoit M. ;
Fidrich, Marta ;
Furst, Jacob D. ;
Furukawa, Daisuke ;
Grenacher, Lars ;
Hornegger, Joachim ;
Kainmueller, Dagmar ;
Kitney, Richard I. ;
Kobatake, Hidefumi ;
Lamecker, Hans ;
Lange, Thomas ;
Lee, Jeongjin ;
Lennon, Brian ;
Li, Rui ;
Li, Senhu ;
Meinzer, Hans-Peter ;
Nemeth, Gabor ;
Raicu, Daniela S. ;
Rau, Anne-Mareike ;
van Rikxoort, Eva M. ;
Rousson, Mikael ;
Rusko, Laszlo ;
Saddi, Kinda A. ;
Schmidt, Guenter ;
Seghers, Dieter ;
Shimizu, Akinobu ;
Slagmolen, Pieter ;
Sorantin, Erich ;
Soza, Grzegorz ;
Susomboon, Ruchaneewan ;
Waite, Jonathan M. ;
Wimmer, Andreas ;
Wolf, Ivo .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) :1251-1265
[9]   nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Kohl, Simon A. A. ;
Petersen, Jens ;
Maier-Hein, Klaus H. .
NATURE METHODS, 2021, 18 (02) :203-+
[10]   Recent Automatic Segmentation Algorithms of MRI Prostate Regions: A Review [J].
Khan, Zia ;
Yahya, Norashikin ;
Alsaih, Khaled ;
Al-Hiyali, Mohammed Isam ;
Meriaudeau, Fabrice .
IEEE ACCESS, 2021, 9 :97878-97905