Eigenvalues and threshold resonances of a two-dimensional split-step quantum walk with strong shift

被引:1
作者
Fuda, Toru [1 ]
Funakawa, Daiju [2 ]
Sasayama, Satoshi [3 ]
Suzuki, Akito [4 ]
机构
[1] Kokushikan Univ, Sch Sci & Engn, Setagaya, Tokyo 1548515, Japan
[2] Hokkai Gakuen Univ, Dept Elect & Informat Engn, Sapporo 0628605, Japan
[3] Hokkaido Informat Univ, Dept Informat Media, Nishi-Nopporo 59-2, Ebetsu, Hokkaido 0698585, Japan
[4] Shinshu Univ, Fac Engn, Div Math & Phys, Wakasato, Nagano 3808553, Japan
关键词
Quantum walks; Spectral analysis; Localization; Resonances;
D O I
10.1007/s40509-023-00307-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we derive sufficient conditions for the localization of two-dimensional split-step quantum walks with a strong shift. For this purpose, we analyze the zero points of the function f introduced by Fuda et al. (Quantum Inf Process 16(8), 203, 2017) and make these zero points explicit. These zeros provide a concrete representation of the eigenvalues and eigenvectors of the evolution operator, and in particular, clarify where localization occurs. In addition, the eigenvalues obtained here asymptotically approach threshold resonance in special cases. We also describe the display of threshold resonances and generalized eigenfunctions.
引用
收藏
页码:483 / 496
页数:14
相关论文
共 27 条
  • [1] The threshold effects for the two-particle hamiltonians on lattices
    Albeverio, S
    Lakaev, SN
    Makarov, KA
    Muminov, ZI
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (01) : 91 - 115
  • [2] Renormalization group analysis of spectral problems in quantum field theory
    Bach, V
    Frohlich, J
    Sigal, IM
    [J]. ADVANCES IN MATHEMATICS, 1998, 137 (02) : 205 - 298
  • [3] Endo T, 2019, QUANTUM INF COMPUT, V19, P901
  • [4] Spectral analysis for a multi-dimensional split-step quantum walk with a defect
    Fuda, Toru
    Narimatsu, Akihiro
    Saito, Kei
    Suzuki, Akito
    [J]. QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2022, 9 (01) : 93 - 112
  • [5] Fuda T, 2019, REV ROUM MATH PURES, V64, P157
  • [6] Localization for a one-dimensional split-step quantum walk with bound states robust against perturbations
    Fuda, Toru
    Funakawa, Daiju
    Suzuki, Akito
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
  • [7] Localization of a multi-dimensional quantum walk with one defect
    Fuda, Toru
    Funakawa, Daiju
    Suzuki, Akito
    [J]. QUANTUM INFORMATION PROCESSING, 2017, 16 (08)
  • [8] The spectrum of non-local discrete Schrodinger operators with a delta-potential
    Hiroshima, Fumio
    Lorinczi, Jozsef
    [J]. PACIFIC JOURNAL OF MATHEMATICS FOR INDUSTRY, 2014, 6
  • [9] Kawai H., 2018, YOKOHAMA MATH J, V64, P111
  • [10] Observation of topologically protected bound states in photonic quantum walks
    Kitagawa, Takuya
    Broome, Matthew A.
    Fedrizzi, Alessandro
    Rudner, Mark S.
    Berg, Erez
    Kassal, Ivan
    Aspuru-Guzik, Alan
    Demler, Eugene
    White, Andrew G.
    [J]. NATURE COMMUNICATIONS, 2012, 3