Gamma type operators;
Modulus of continuity;
Polynomial weighted space;
Rate of convergence;
Steklov means;
Voronovskaja type theorem;
CONVERGENCE;
D O I:
10.1007/s40995-023-01507-6
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
We investigate the rate of convergence of the operators introduced by Singh et al. (Linear Multilinear Algebra, 2022. ) for functions of a polynomial growth. By using Steklov means, we obtain an estimate of error for these operators in terms of the modulus of continuity of order two. We derive an asymptotic theorem of Voronovskaja type and its quantitative form. Further, we modify these operators to examine the approximation of smooth functions in the above polynomial weighted space, i.e. a space of functions under a norm that involves multiplication by a polynomial function referred to as the weight and show that we achieve better approximation. We also discuss the convergence in the Lipschitz space and a Voronovskaja type asymptotic result.
机构:
Quanzhou Normal Univ, Fujian Prov Key Lab Data Intens Comp, Key Lab Intelligent Comp & Informat Proc, Sch Math & Comp Sci, Quanzhou 362000, Peoples R ChinaQuanzhou Normal Univ, Fujian Prov Key Lab Data Intens Comp, Key Lab Intelligent Comp & Informat Proc, Sch Math & Comp Sci, Quanzhou 362000, Peoples R China
Cai, Qing-Bo
Cekim, Bayram
论文数: 0引用数: 0
h-index: 0
机构:
Gazi Univ, Dept Math, Fac Sci, TR-06560 Ankara, TurkeyQuanzhou Normal Univ, Fujian Prov Key Lab Data Intens Comp, Key Lab Intelligent Comp & Informat Proc, Sch Math & Comp Sci, Quanzhou 362000, Peoples R China
Cekim, Bayram
Icoz, Gurhan
论文数: 0引用数: 0
h-index: 0
机构:
Gazi Univ, Dept Math, Fac Sci, TR-06560 Ankara, TurkeyQuanzhou Normal Univ, Fujian Prov Key Lab Data Intens Comp, Key Lab Intelligent Comp & Informat Proc, Sch Math & Comp Sci, Quanzhou 362000, Peoples R China