q-Gamma Type Operators for Approximating Functions of a Polynomial Growth

被引:0
|
作者
Agrawal, Purshottam Narain [1 ]
Baxhaku, Behar [2 ]
Chauhan, Ruchi [3 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, India
[2] Univ Prishtina Hasan Prishtina, Dept Math, Prishtina, Kosovo
[3] KGK PG Coll, Dept Math, Moradabad 244001, India
关键词
Gamma type operators; Modulus of continuity; Polynomial weighted space; Rate of convergence; Steklov means; Voronovskaja type theorem; CONVERGENCE;
D O I
10.1007/s40995-023-01507-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate the rate of convergence of the operators introduced by Singh et al. (Linear Multilinear Algebra, 2022. ) for functions of a polynomial growth. By using Steklov means, we obtain an estimate of error for these operators in terms of the modulus of continuity of order two. We derive an asymptotic theorem of Voronovskaja type and its quantitative form. Further, we modify these operators to examine the approximation of smooth functions in the above polynomial weighted space, i.e. a space of functions under a norm that involves multiplication by a polynomial function referred to as the weight and show that we achieve better approximation. We also discuss the convergence in the Lipschitz space and a Voronovskaja type asymptotic result.
引用
收藏
页码:1367 / 1377
页数:11
相关论文
共 50 条
  • [41] On Stancu type generalization of q-Baskakov operators
    Buyukyazici, Ibrahim
    Atakut, Cigdem
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) : 752 - 759
  • [42] Approximation by q-Baskakov Durrmeyer type operators
    Agrawal, P. N.
    Kumar, A. Sathish
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2014, 63 (01) : 73 - 89
  • [43] King Type (p, q)-Bernstein Schurer Operators
    Bawa, Parveen
    Bhardwaj, Neha
    Bhatia, Sumit Kaur
    THAI JOURNAL OF MATHEMATICS, 2023, 21 (03): : 431 - 443
  • [44] Voronovskaya type asymptotic approximation by modified Gamma operators
    Izgi, Aydin
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (20) : 8061 - 8067
  • [45] q-Bernstein-Schurer-Kantorovich type operators
    P. N. Agrawal
    Meenu Goyal
    Arun Kajla
    Bollettino dell'Unione Matematica Italiana, 2015, 8 (3) : 169 - 180
  • [46] Approximation properties of (p, q)-Bernstein type operators
    Finta, Zoltan
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2016, 8 (02) : 222 - 232
  • [47] q-Szasz-Mirakyan-Kantorovich type operators preserving some test functions
    Orkcu, Mediha
    Dogru, Ogun
    APPLIED MATHEMATICS LETTERS, 2011, 24 (09) : 1588 - 1593
  • [48] New class of beta type operators approximating integrable function
    Dhawal J. Bhatt
    Vishnu Narayan Mishra
    Ranjan Kumar Jana
    Advances in Operator Theory, 2020, 5 : 301 - 323
  • [49] Gamma Generalization Operators Involving Analytic Functions
    Cai, Qing-Bo
    Cekim, Bayram
    Icoz, Gurhan
    MATHEMATICS, 2021, 9 (13)
  • [50] The Durrmeyer type modification of the q-Baskakov type operators with two parameter α and β
    Mishra, Vishnu Narayan
    Patel, Prashantkumar
    NUMERICAL ALGORITHMS, 2014, 67 (04) : 753 - 769