Cathode Electrolyte Interface Engineering by Gradient Fluorination for High-Performance Lithium Rich Cathode

被引:42
作者
Lu, Di [1 ]
Chen, Yufang [1 ]
Sun, Weiwei [1 ]
Xie, Wei [1 ]
Yi, Shuaiyu [1 ]
Luo, Shiqiang [2 ]
Zuo, Lanlan [1 ]
Zhao, Yanshuang [1 ]
Yang, Tianyan [1 ]
Xiao, Peitao [1 ]
Zheng, Chunman [1 ]
机构
[1] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Changsha 410073, Peoples R China
[2] Shanghai Jiao Tong Univ, Frontiers Sci Ctr Transformat Mol, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
cathode-electrolyte-interface; fluorination; LiF-rich; lithium-rich cathodes; OXYGEN REDOX; LI; OXIDE; MN; STABILITY; BATTERIES; DESIGN;
D O I
10.1002/aenm.202301765
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite their ultrahigh specific capacity, lithium-rich layered oxide cathodes are still plagued by challenges such as poor cycle stability and notorious voltage decay, which are primarily attributed to surface issues such as the release of lattice oxygen and interfacial side reactions. In this study, a facial strategy of gradient fluorination is adopted to construct a thin but robust LiF-rich cathode electrolyte interface (CEI), highly enhancing the stability of the interface of lithium-rich oxides. Experimental results and theoretical calculations both demonstrate that the stable CEI not only promotes oxygen participation in redox reactions and simultaneously inhibits oxygen release and structural transition, but also facilitates the transport kinetics of lithium ions. As a result, the gradient fluorinated lithium-rich cathode delivers highly enhanced rate performance (133 mAh g(-1) at 5 C), superior cycling stability with a capacity retention of 81.9% after 100 cycles at 1 C (250 mAh g(-1)), and alleviated voltage fade (only 1.75 mV per cycle). Moreover, a unique formation mechanism for LiF-rich surfaces is proposed according to theoretical calculations. This work not only provides a fresh understanding of the CEI formation mechanism, but also show a promising avenue for designing LiF-rich CEIs applicable to other layered oxide cathodes.
引用
收藏
页数:14
相关论文
共 61 条
[1]   Formation of LiF-rich Cathode-Electrolyte Interphase by Electrolyte Reduction [J].
Bai, Panxing ;
Ji, Xiao ;
Zhang, Jiaxun ;
Zhang, Weiran ;
Hou, Singyuk ;
Su, Hai ;
Li, Mengjie ;
Deng, Tao ;
Cao, Longsheng ;
Liu, Sufu ;
He, Xinzi ;
Xu, Yunhua ;
Wang, Chunsheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (26)
[2]   Fluorination of Li-Rich Lithium-Ion-Battery Cathode Materials by Fluorine Gas: Chemistry, Characterization, and Electrochemical Performance in Half Cells [J].
Breddemann, Ulf ;
Erickson, Evan M. ;
Davis, Victoria ;
Schipper, Florian ;
Ellwanger, Mathias ;
Daub, Michael ;
Hoffmann, Anke ;
Erk, Christoph ;
Markovsky, Boris ;
Aurbach, Doron ;
Krossing, Ingo .
CHEMELECTROCHEM, 2019, 6 (13) :3337-3349
[3]   Constructing high performance Li-rich Mn-based cathode via surface phase structure controlling and ion doping [J].
Cao, Shuang ;
Chen, Jiarui ;
Li, Heng ;
Li, Zhi ;
Guo, Changmeng ;
Chen, Gairong ;
Guo, Xiaowei ;
Wang, Xianyou .
JOURNAL OF POWER SOURCES, 2023, 555
[4]   Ion-Exchange: A Promising Strategy to Design Li-Rich and Li-Excess Layered Cathode Materials for Li-Ion Batteries [J].
Cao, Xin ;
Qiao, Yu ;
Jia, Min ;
He, Ping ;
Zhou, Haoshen .
ADVANCED ENERGY MATERIALS, 2022, 12 (04)
[5]   Effect of Li3PO4 coating of layered lithium -rich oxide on electrochemical performance [J].
Chen, Dongrui ;
Zheng, Feng ;
Li, Liu ;
Chen, Min ;
Zhong, Xiaoxin ;
Li, Weishan ;
Lu, Li .
JOURNAL OF POWER SOURCES, 2017, 341 :147-155
[6]   Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries [J].
Chen, Ji ;
Fan, Xiulin ;
Li, Qin ;
Yang, Hongbin ;
Khoshi, M. Reza ;
Xu, Yaobin ;
Hwang, Sooyeon ;
Chen, Long ;
Ji, Xiao ;
Yang, Chongyin ;
He, Huixin ;
Wang, Chongmin ;
Garfunkel, Eric ;
Su, Dong ;
Borodin, Oleg ;
Wang, Chunsheng .
NATURE ENERGY, 2020, 5 (05) :386-397
[7]   Persistent and partially mobile oxygen vacancies in Li-rich layered oxides [J].
Csernica, Peter M. ;
Kalirai, Samanbir S. ;
Gent, William E. ;
Lim, Kipil ;
Yu, Young-Sang ;
Liu, Yunzhi ;
Ahn, Sung-Jin ;
Kaeli, Emma ;
Xu, Xin ;
Stone, Kevin H. ;
Marshall, Ann F. ;
Sinclair, Robert ;
Shapiro, David A. ;
Toney, Michael F. ;
Chueh, William C. .
NATURE ENERGY, 2021, 6 (06) :642-652
[8]   In situ formation of LiF decoration on a Li-rich material for long-cycle life and superb low-temperature performance [J].
Ding, Xiang ;
Li, Yi-Xuan ;
Chen, Fei ;
He, Xiao-Dong ;
Yasmin, Aqsa ;
Hu, Qiao ;
Wen, Zhao-Yin ;
Chen, Chun-Hua .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (18) :11513-11519
[9]   In Situ Surface Self-Reconstruction Strategies in Li-Rich Mn-Based Layered Cathodes for Energy-Dense Li-Ion Batteries [J].
Gou, Xiaoxia ;
Hao, Zhenkun ;
Hao, Zhimeng ;
Yang, Gaojing ;
Yang, Zhuo ;
Zhang, Xinyue ;
Yan, Zhenhua ;
Zhao, Qing ;
Chen, Jun .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (18)
[10]   Enhancing cyclic performance of lithium-rich manganese-based cathode via in-situ co-doping of magnesium and fluorine [J].
Guo, Zhihao ;
Li, Lin ;
Su, Zihao ;
Peng, Gongchang ;
Qu, Meizhen ;
Fu, Yuanxiang ;
Wang, Hao ;
Ge, Wujie .
ELECTROCHIMICA ACTA, 2023, 437