A multi-timescale optimal operation strategy for an integrated energy system considering integrated demand response and equipment response time

被引:4
|
作者
Dong, Fugui [1 ]
Meng, Zihang [1 ]
Chi, Laihao [1 ]
Wang, Xiaofeng [1 ]
机构
[1] North China Elect Power Univ, Sch Econ & Management, Beijing 102206, Peoples R China
关键词
MODEL-PREDICTIVE CONTROL; UNCERTAINTY; OPTIMIZATION; DISPATCH;
D O I
10.1063/5.0159626
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The response potential of demand-side resources is becoming increasingly significant in integrated energy system (IES) operations. In addition, to ensure the effective participation of system devices, their actual responsiveness at different timescales should be considered. Based on these considerations, this paper proposes an IES multi-timescale operation optimization strategy that incorporates multiple forms of integrated demand response (IDR) and considers the response characteristics of the equipment. First, the multi-timescale characteristics of IDR are analyzed. Moreover, a multi-timescale operation model of IES that comprises day-ahead, intraday, and real-time stages is further established. In the day-ahead dispatch, a low-carbon economic scheduling model is developed by considering the shifting demand response (DR) and the cost of carbon emissions. In the intraday scheduling, noting that cooling and heat energy transmission possess slow dynamic characteristics, a rolling optimization model for cooling/heating coupled equipment considering load shedding and substituting DR is established. In real-time scheduling, the output of electric/gas coupled equipment is adjusted. Finally, an industrial park-type IES in northern China was selected as an example for a case study. The results show that (1) the IDR multi-timescale response strategy can exploit different types of demand-side flexibility resources. After implementing the shifting DR, the peak-to-valley difference of the electric load curve was reduced by 20%, and the total system cost was reduced by 2.3%. After implementing load shedding, the maximum load differences per unit period of the electric, heat, and cooling load curves decreased by 18.7%, 40.0%, and 68.9%, respectively. (2) By refining the timescale of IES optimization, the proposed model can effectively ensure the energy supply and demand balance of the system under different load scenarios and reduce the system operation cost. After applying the model to simulation in three typical days (transition season, summer, and winter), the penalty costs of lost loads reduce by yen 3650, yen 3807, and yen 3599, respectively, and the total system costs decrease by 17.4%, 16.1%, and 16.2%, respectively.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Multi-timescale hierarchical scheduling of an integrated energy system considering system inertia
    Qin, Yuxiao
    Liu, Pei
    Li, Zheng
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 169
  • [2] Optimal operation model of a park integrated energy system considering uncertainty of integrated demand response
    Yan M.
    Li H.
    Wang J.
    He Y.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2022, 50 (02): : 163 - 175
  • [3] Bilevel Optimal Dispatch Strategy for a Multi-Energy System of Industrial Parks by Considering Integrated Demand Response
    Zhao, Yuehao
    Peng, Ke
    Xu, Bingyin
    Li, Huimin
    Liu, Yuquan
    Zhang, Xinhui
    ENERGIES, 2018, 11 (08):
  • [4] Optimal Operation Analysis of Integrated Community Energy System Considering the Uncertainty of Demand Response
    Wang, Lei
    Hou, Chongqi
    Ye, Bin
    Wang, Xuli
    Yin, Chenxu
    Cong, Hao
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (04) : 3681 - 3691
  • [5] Research on Economic Operation Strategy of CHP Microgrid Considering Renewable Energy Sources and Integrated Energy Demand Response
    Dong, Jun
    Nie, Shilin
    Huang, Hui
    Yang, Peiwen
    Fu, Anyuan
    Lin, Jin
    SUSTAINABILITY, 2019, 11 (18)
  • [6] Optimal Expansion Planning Model for Integrated Energy System Considering Integrated Demand Response and Bidirectional Energy Exchange
    Dong, Wenkai
    Lu, Zhigang
    He, Liangce
    Zhang, Jiangfeng
    Ma, Tao
    Cao, Xiaobo
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2023, 9 (04): : 1449 - 1459
  • [7] An improved stochastic model predictive control operation strategy of integrated energy system based on a single-layer multi-timescale framework
    Wei, Shangshang
    Gao, Xianhua
    Zhang, Yi
    Li, Yiguo
    Shen, Jiong
    Li, Zuyi
    ENERGY, 2021, 235
  • [8] Optimal trading strategy for integrated energy company based on integrated demand response considering load classifications
    Ma, Zhoujun
    Zheng, Yuping
    Mu, Chenlu
    Ding, Tao
    Zang, Haixiang
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 128
  • [9] An improved multi-timescale coordinated control strategy for an integrated energy system with a hybrid energy storage system
    Pan, Chenyun
    Fan, Hongtao
    Zhang, Ruixiang
    Sun, Jie
    Wang, Yu
    Sun, Yaojie
    APPLIED ENERGY, 2023, 343
  • [10] Optimal configuration of park-level integrated energy system considering integrated demand response and construction time sequence
    Liu, Chang
    Li, Yan
    Wang, Qingshan
    Wang, Xin
    Chen, Changming
    Lin, Zhenzhi
    Yang, Li
    ENERGY REPORTS, 2022, 8 : 1174 - 1180