Quantum Size Effect to Induce Colossal High-Temperature Energy Storage Density and Efficiency in Polymer/Inorganic Cluster Composites

被引:97
作者
Yang, Mingcong [1 ]
Wang, Shaojie [1 ]
Fu, Jing [1 ]
Zhu, Yujie [1 ]
Liang, Jiajie [1 ]
Cheng, Sang [1 ]
Hu, Shixun [1 ]
Hu, Jun [1 ]
He, Jinliang [1 ]
Li, Qi [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
dielectric capacitors; high-temperature energy storage; polymer composites; quantum size effect; POLYMER; DIELECTRICS; NANOCOMPOSITES;
D O I
10.1002/adma.202301936
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polymer dielectrics need to operate at high temperatures to meet the demand of electrostatic energy storage in modern electronic and electrical systems. The polymer nanocomposite approach, an extensively proved strategy for performance improvement, encounters a bottleneck of reduced energy density and poor discharge efficiency beyond 150 degrees C. In this work, a polymer/metal oxide cluster composite prepared based on the "site isolation" strategy is reported. Capitalizing on the quantum size effect, the bandgap and surface defect states of the ultrasmall inorganic clusters (2.2 nm diameter) are modulated to markedly differ from regular-sized nanoparticles. Experimental results in conjunction with computational simulation demonstrate that the presence of ultrasmall inorganic clusters can introduce more abundant, deeper traps in the composite dielectric with respect to conventional polymer/nanoparticle blends. Unprecedented high-temperature capacitive performance, including colossal energy density (6.8 J cm(-3)), ultrahigh discharge efficiency (95%) and superior stability at different electric field frequencies, are achieved in these polymer/cluster composites up to 200 degrees C. Along with the advantages in material preparation (inexpensive precursors and one-pot synthesis), such polymer/inorganic cluster composite approach is promising for high-temperature dielectric energy storage in practical power apparatus and electronic devices.
引用
收藏
页数:9
相关论文
共 53 条
[1]   Tuning Nanofillers in In Situ Prepared Polyimide Nanocomposites for High-Temperature Capacitive Energy Storage [J].
Ai, Ding ;
Li, He ;
Zhou, Yao ;
Ren, Lulu ;
Han, Zhubing ;
Yao, Bin ;
Zhou, Wei ;
Zhao, Ling ;
Xu, Jianmei ;
Wang, Qing .
ADVANCED ENERGY MATERIALS, 2020, 10 (16)
[2]   HOPPING CONDUCTIVITY IN DISORDERED SYSTEMS [J].
AMBEGAOKAR, V ;
HALPERIN, BI ;
LANGER, JS .
PHYSICAL REVIEW B-SOLID STATE, 1971, 4 (08) :2612-+
[3]  
Botan, 2022, MAT SCI SEMICON PROC, V137
[4]   Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage [J].
Cheng, Sang ;
Zhou, Yao ;
Li, Yushu ;
Yuan, Chao ;
Yang, Mingcong ;
Fu, Jing ;
Hu, Jun ;
He, Jinliang ;
Li, Qi .
ENERGY STORAGE MATERIALS, 2021, 42 :445-453
[5]   LUMINESCENCE AND PHOTOPHYSICS OF CDS SEMICONDUCTOR CLUSTERS - THE NATURE OF THE EMITTING ELECTRONIC STATE [J].
CHESTNOY, N ;
HARRIS, TD ;
HULL, R ;
BRUS, LE .
JOURNAL OF PHYSICAL CHEMISTRY, 1986, 90 (15) :3393-3399
[6]  
Chiu F.-C., 2014, Adv. Mater. Sci. Eng., V2014, DOI [10.1155/2014/578168, DOI 10.1155/2014/578168]
[7]   Native point defects and dangling bonds in α-Al2O3 [J].
Choi, Minseok ;
Janotti, Anderson ;
Van de Walle, Chris G. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (04)
[8]   A dielectric polymer with high electric energy density and fast discharge speed [J].
Chu, Baojin ;
Zhou, Xin ;
Ren, Kailiang ;
Neese, Bret ;
Lin, Minren ;
Wang, Qing ;
Bauer, F. ;
Zhang, Q. M. .
SCIENCE, 2006, 313 (5785) :334-336
[9]  
Claudine N., 2001, SURF REV LETT, V8, P121
[10]   Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage [J].
Dang, Zhi-Min ;
Yuan, Jin-Kai ;
Yao, Sheng-Hong ;
Liao, Rui-Jin .
ADVANCED MATERIALS, 2013, 25 (44) :6334-6365