Stability analysis of stochastic gradient descent for homogeneous neural networks and linear classifiers

被引:6
|
作者
Paquin, Alexandre Lemire [1 ]
Chaib-draa, Brahim [1 ]
Giguere, Philippe [1 ]
机构
[1] Laval Univ, Dept Comp Sci & Software Engn, Pavillon Adrien Pouliot 1065,Ave Med, Quebec City, PQ G1V 0A6, Canada
关键词
Generalization; Deep learning; Stochastic gradient descent; Stability;
D O I
10.1016/j.neunet.2023.04.028
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We prove new generalization bounds for stochastic gradient descent when training classifiers with invariances. Our analysis is based on the stability framework and covers both the convex case of linear classifiers and the non-convex case of homogeneous neural networks. We analyze stability with respect to the normalized version of the loss function used for training. This leads to investigating a form of angle-wise stability instead of euclidean stability in weights. For neural networks, the measure of distance we consider is invariant to rescaling the weights of each layer. Furthermore, we exploit the notion of on-average stability in order to obtain a data-dependent quantity in the bound. This data-dependent quantity is seen to be more favorable when training with larger learning rates in our numerical experiments. This might help to shed some light on why larger learning rates can lead to better generalization in some practical scenarios.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页码:382 / 394
页数:13
相关论文
共 50 条