A Local Douglas formula for Higher Order Weighted Dirichlet-Type Integrals

被引:2
|
作者
Ghara, Soumitra [1 ]
Gupta, Rajeev [2 ]
Reza, Md. Ramiz [3 ]
机构
[1] Laval Univ, Dept Math & Stat, Quebec City, PQ G1V 0A6, Canada
[2] Indian Inst Technol Goa, Sch Math & Comp Sci, Goa 403401, India
[3] Indian Inst Sci Educ & Res, Sch Math, Thiruvananthapuram 695551, Kerala, India
关键词
Weighted Dirichlet-type integrals; Reproducing kernel Hilbert spaces; De Branges-Rovnyak spaces; Douglas formula; M-ISOMETRIC TRANSFORMATIONS; INVARIANT SUBSPACES; SPACES; MULTIPLIERS;
D O I
10.1007/s12220-023-01297-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a local Douglas formula for higher order weighted Dirichlet-type integrals. With the help of this formula, we study the multiplier algebra of the associated higher order weighted Dirichlet-type spaces H-mu, induced by an m-tuple mu = (mu(1),..., mu(m)) of finite non-negative Borel measures on the unit circle. In particular, it is shown that any weighted Dirichlet-type space of order m, for m >= 3, forms an algebra under pointwise product. We also prove that every non-zero closed M-z-invariant subspace of H-mu, has codimension 1 property if m >= 3 or mu(2) is finitely supported. As another application of this local Douglas formula obtained in this article, it is shown that for any m >= 2, weighted Dirichlet-type space of order m does not coincide with any de Branges-Rovnyak space H(b) with equivalence of norms.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] A Local Douglas formula for Higher Order Weighted Dirichlet-Type Integrals
    Soumitra Ghara
    Rajeev Gupta
    Md. Ramiz Reza
    The Journal of Geometric Analysis, 2023, 33
  • [2] CESARO SUMMABILITY OF TAYLOR SERIES IN HIGHER ORDER WEIGHTED DIRICHLET-TYPE SPACES
    Ghara, Soumitra
    Gupta, Rajeev
    Reza, Md. Ramiz
    OPUSCULA MATHEMATICA, 2024, 44 (03) : 373 - 390
  • [3] Weighted Dirichlet-type inequalities for Steiner symmetrization
    F. Brock
    Calculus of Variations and Partial Differential Equations, 1999, 8 : 15 - 25
  • [4] Weighted Dirichlet-type inequalities for Steiner symmetrization
    Brock, F
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 8 (01) : 15 - 25
  • [5] Dirichlet-type energy integrals of hyperbolic harmonic mappings
    Chen, Jiaolong
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (07) : 1125 - 1145
  • [6] Isometric composition operators on weighted Dirichlet-type spaces
    Li-Gang Geng
    Ze-Hua Zhou
    Xing-Tang Dong
    Journal of Inequalities and Applications, 2012
  • [7] Multipliers of Dirichlet-Type Subspaces of Weighted Bloch Spaces
    Shen, Conghui
    Xu, Jingshi
    JOURNAL OF MATHEMATICAL STUDY, 2022, 55 (03) : 229 - 241
  • [8] Density of Polynomials in Certain Weighted Dirichlet-type Spaces
    Abkar, A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (01)
  • [9] Isometric composition operators on weighted Dirichlet-type spaces
    Geng, Li-Gang
    Zhou, Ze-Hua
    Dong, Xing-Tang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [10] Higher Order Dirichlet-Type Problems in 2D Complex Quaternionic Analysis
    B. Schneider
    Vestnik St. Petersburg University, Mathematics, 2019, 52 : 409 - 418