Computer-aided characterization of early cancer in Barrett's esophagus on i-scan magnification imaging: a multicenter international study

被引:8
作者
Hussein, Mohamed [1 ,2 ]
Lines, David [4 ]
Puyal, Juana Gonzalez-Bueno [2 ,4 ]
Kader, Rawen [2 ]
Bowman, Nicola [1 ]
Sehgal, Vinay [3 ]
Toth, Daniel [4 ]
Ahmad, Omer F. [2 ,3 ]
Everson, Martin [1 ]
Esteban, Jose Miguel [5 ]
Bisschops, Raf [6 ]
Banks, Matthew [3 ]
Haefner, Michael [7 ]
Mountney, Peter [4 ]
Stoyanov, Danail [2 ]
Lovat, Laurence B. [1 ,2 ,3 ]
Haidry, Rehan [1 ,2 ,3 ]
机构
[1] UCL, Div Surg & Intervent Sci, 43-45 Foley St, London W1W 7TS, England
[2] UCL, Wellcome EPSRC Ctr Intervent & Surg Sci WEISS, London, England
[3] Univ Coll London Hosp, Dept Gastroenterol, London, England
[4] Odin Vis, London, England
[5] Clin San Carlos, Dept Gastroenterol & Hepatol, Madrid, Spain
[6] Univ Hosp Leuven, Dept Gastroenterol & Hepatol, Leuven, Belgium
[7] Krankenhaus Barmherzigen Schwestern, Dept Internal Med 2, Vienna, Austria
基金
英国工程与自然科学研究理事会;
关键词
ARTIFICIAL-INTELLIGENCE; MUCOSAL MORPHOLOGY; ENDOSCOPY; CLASSIFICATION; SYSTEM; VALIDATION; DYSPLASIA; NEOPLASIA; PATTERNS;
D O I
10.1016/j.gie.2022.11.020
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background and aims: We aimed to develop a computer-aided characterization system that could support the diagnosis of dysplasia in Barrett's esophagus (BE) on magnification endoscopy. Methods: Videos were collected in high-definition magnification white-light and virtual chromoendoscopy with i-scan (Pentax Hoya, Japan) imaging in patients with dysplastic and nondysplastic BE (NDBE) from 4 centers. We trained a neural network with a Resnet101 architecture to classify frames as dysplastic or nondysplastic. The network was tested on 3 different scenarios: high-quality still images, all available video frames, and a selected sequence within each video. Results: Fifty-seven patients, each with videos of magnification areas of BE (34 dysplasia, 23 NDBE), were included. Performance was evaluated by a leave-1-patient-out cross-validation method. In all, 60,174 (39,347 dysplasia, 20,827 NDBE) magnification video frames were used to train the network. The testing set included 49,726 i-scan-3/optical enhancement magnification frames. On 350 high-quality still images, the network achieved a sensitivity of 94%, specificity of 86%, and area under the receiver operator curve (AUROC) of 96%. On all 49,726 available video frames, the network achieved a sensitivity of 92%, specificity of 82%, and AUROC of 95%. On a selected sequence of frames per case (total of 11,471 frames), we used an exponentially weighted moving average of classifications on consecutive frames to characterize dysplasia. The network achieved a sensitivity of 92%, specificity of 84%, and AUROC of 96%. The mean assessment speed per frame was 0.0135 seconds (SD +/- 0.006). Conclusion: Our network can characterize BE dysplasia with high accuracy and speed on high-quality magnification images and sequence of video frames, moving it toward real-time automated diagnosis.
引用
收藏
页码:646 / 654
页数:9
相关论文
共 20 条
[1]   Global incidence of oesophageal cancer by histological subtype in 2012 [J].
Arnold, Melina ;
Soerjomataram, Isabelle ;
Ferlay, Jacques ;
Forman, David .
GUT, 2015, 64 (03) :381-387
[2]   Endoscopic assessment and grading of Barrett's esophagus using magnification endoscopy and narrow band imaging: Impact of structured learning and experience on the accuracy of the Amsterdam classification system [J].
Baldaque-Silva, Francisco ;
Marques, Margarida ;
Lunet, Nuno ;
Themudo, Goncalo ;
Goda, Kenichi ;
Toth, Ervin ;
Soares, Jose ;
Bastos, Pedro ;
Ramalho, Rosa ;
Pereira, Pedro ;
Marques, Nuno ;
Coimbra, Miguel ;
Vieth, Michael ;
Dinis-Ribeiro, Mario ;
Macedo, Guilherme ;
Lundell, Lars ;
Marschall, Hanns-Ulrich .
SCANDINAVIAN JOURNAL OF GASTROENTEROLOGY, 2013, 48 (02) :160-167
[3]   Deep-Learning System Detects Neoplasia in Patients With Barrett's Esophagus With Higher Accuracy Than Endoscopists in a Multistep Training and Validation Study With Benchmarking [J].
de Groof, Albert J. ;
Struyvenberg, Maarten R. ;
van der Putten, Joost ;
van der Sommen, Fons ;
Fockens, Kiki N. ;
Curvers, Wouter L. ;
Zinger, Sveta ;
Pouw, Roos E. ;
Coron, Emmanuel ;
Baldaque-Silva, Francisco ;
Pech, Oliver ;
Weusten, Bas ;
Meining, Alexander ;
Neuhaus, Horst ;
Bisschops, Raf ;
Dent, John ;
Schoon, Erik J. ;
de With, Peter H. ;
Bergman, Jacques J. .
GASTROENTEROLOGY, 2020, 158 (04) :915-+
[4]   The Argos project: The development of a computer-aided detection system to improve detection of Barrett's neoplasia on white light endoscopy [J].
de Groof, Jeroen ;
van der Sommen, Fons ;
van der Putten, Joost ;
Struyvenberg, Maarten R. ;
Zinger, Sveta ;
Curvers, Muter L. ;
Pech, Oliver ;
Meining, Alexander ;
Neuhaus, Horst ;
Bisschops, Raf ;
Schoon, Erik J. ;
de With, Peter H. ;
Bergman, Jacques J. .
UNITED EUROPEAN GASTROENTEROLOGY JOURNAL, 2019, 7 (04) :538-547
[5]   Real-time use of artificial intelligence in the evaluation of cancer in Barrett's oesophagus [J].
Ebigbo, Alanna ;
Mendel, Robert ;
Probst, Andreas ;
Manzeneder, Johannes ;
Prinz, Friederike ;
de Souza, Luis A., Jr. ;
Papa, Joao ;
Palm, Christoph ;
Messmann, Helmut .
GUT, 2020, 69 (04) :615-616
[6]   Virtual chromoendoscopy by using optical enhancement improves the detection of Barrett's esophagus-associated neoplasia [J].
Everson, Martin A. ;
Lovat, Laurence B. ;
Graham, David G. ;
Bassett, Paul ;
Magee, Cormac ;
Alzoubaidi, Durayd ;
Fernandez-Sordo, Jacobo O. ;
Sweis, Rami ;
Banks, Matthew R. ;
Wani, Sachin ;
Esteban, Jose M. ;
Ragunath, Krish ;
Bisschops, Raf ;
Haidry, Rehan J. .
GASTROINTESTINAL ENDOSCOPY, 2019, 89 (02) :247-+
[7]   Newly developed magnifying endoscopic classification of the Japan Esophageal Society to identify superficial Barrett's esophagus-related neoplasms [J].
Goda, Kenichi ;
Fujisaki, Junko ;
Ishihara, Ryu ;
Takeuchi, Manabu ;
Takahashi, Akiko ;
Takaki, Yasuhiro ;
Hirasawa, Dai ;
Momma, Kumiko ;
Amano, Yuji ;
Yagi, Kazuyoshi ;
Furuhashi, Hiroto ;
Shimizu, Tomoki ;
Kanesaka, Takashi ;
Hashimoto, Satoru ;
Ono, Yoichiro ;
Yamagata, Taku ;
Fujiwara, Junko ;
Azumi, Takane ;
Nishikawa, Masako ;
Watanabe, Gen ;
Ohkura, Yasuo ;
Oyama, Tsuneo .
ESOPHAGUS, 2018, 15 (03) :153-159
[8]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[9]   Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett's esophagus (with video) [J].
Hashimoto, Rintaro ;
Requa, James ;
Dao, Tyler ;
Ninh, Andrew ;
Tran, Elise ;
Mai, Daniel ;
Lugo, Michael ;
Chehade, Nabil El-Hage ;
Chang, Kenneth J. ;
Karnes, Williams E. ;
Samarasena, Jason B. .
GASTROINTESTINAL ENDOSCOPY, 2020, 91 (06) :1264-+
[10]   Zooming in on Barrett oesophagus using narrow-band imaging: an international observer agreement study [J].
Herrero, Lorenza Alvarez ;
Curvers, Wouter L. ;
Bansal, Ajay ;
Wani, Sachin ;
Kara, Mohammed ;
Schenk, Ed ;
Schoon, Erik J. ;
Lynch, Cristopher R. ;
Rastogi, Amit ;
Pondugula, Krishna ;
Weusten, Bas ;
Sharma, Prateek ;
Bergman, Jacques J. .
EUROPEAN JOURNAL OF GASTROENTEROLOGY & HEPATOLOGY, 2009, 21 (09) :1068-1075