A survey on bipartite graphs embedding

被引:14
作者
Giamphy, Edward [1 ,2 ]
Guillaume, Jean-Loup [2 ]
Doucet, Antoine [2 ]
Sanchis, Kevin [1 ]
机构
[1] Preligens, AI Res, Rue Provence, F-75009 Paris, Ile De France, France
[2] La Rochelle Univ, L3i, Ave Albert Einstein, F-17000 La Rochelle, Charente Mariti, France
关键词
Graph embeddings; Bipartite graph; Representation learning; Graph-based pattern representations; Machine learning; Data mining; Survey; Benchmark;
D O I
10.1007/s13278-023-01058-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Research on graph representation learning (a.k.a. embedding) has received great attention in recent years and shows effective results for various types of networks. Nevertheless, few initiatives have been focused on the particular case of embeddings for bipartite graphs. In this paper, we first define the graph embedding problem in the case of bipartite graphs. Next, we propose a taxonomy of approaches used to tackle this problem and draw a description of state-of-the-art methods. Then, we establish their pros and cons with respect to conventional network embeddings. Finally, we provide a description of available resources to lead experiments on the subject.
引用
收藏
页数:16
相关论文
共 50 条
[21]   Unsupervised Adaptive Bipartite Graph Embedding [J].
Zhu, Jianyong ;
Chen, Xinyun ;
Yang, Hui ;
Nie, Feiping .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (10) :10514-10525
[22]   Unsupervised Optimized Bipartite Graph Embedding [J].
Zhu, Jianyong ;
Tao, Lihong ;
Yang, Hui ;
Nie, Feiping .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (03) :3224-3238
[23]   BIPARTITE EMBEDDING OF (p, q)-TREES [J].
Orchel, Beata .
OPUSCULA MATHEMATICA, 2006, 26 (01) :119-125
[24]   On bipartite graphs with minimal energy [J].
Li, Xueliang ;
Zhang, Jianbin ;
Wang, Lusheng .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (04) :869-873
[25]   Bipartite Graphs and Monochromatic Squares [J].
Garti, Shimon .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2019, 36 (01) :99-106
[26]   Maximal Energy Bipartite Graphs [J].
Jack H. Koolen ;
Vincent Moulton .
Graphs and Combinatorics, 2003, 19 :131-135
[27]   A panconnectivity theorem for bipartite graphs [J].
Du, Hui ;
Faudree, Ralph J. ;
Lehel, Jeno ;
Yoshimoto, Kiyoshi .
DISCRETE MATHEMATICS, 2018, 341 (01) :151-154
[28]   On the Hamiltonicity of random bipartite graphs [J].
Yilun Shang .
Indian Journal of Pure and Applied Mathematics, 2015, 46 :163-173
[29]   Independence Polynomials of Bipartite Graphs [J].
Huihui Zhang ;
Xia Hong .
Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 :3043-3065
[30]   Dominator sequences in bipartite graphs [J].
Jayaram, B. ;
Arumugam, S. ;
Thulasiraman, K. .
THEORETICAL COMPUTER SCIENCE, 2017, 694 :34-41