Preparation and Electrochemical Characterisation of an Iron-Nickel-Doped Sucrose-Derived Carbon Material for the Oxygen Evolution Reaction

被引:15
|
作者
Sangamithirai, Muthukumaran [1 ]
Mathi, Selvam [1 ]
Ashok, Venkatachalam [1 ]
Jayabharathi, Jayaraman [1 ]
机构
[1] Annamalai Univ, Dept Chem, Mat Sci Lab, Annamalainagar 608002, Tamil Nadu, India
来源
CHEMISTRYSELECT | 2023年 / 8卷 / 10期
关键词
Fe-Ni@SC; low Tafel slope; oxygen evolution reaction; serpent carbon; solvothermal synthesis; HIGHLY EFFICIENT; FACILE SYNTHESIS; WATER OXIDATION; NI; REDUCTION; CATALYSTS; ALKALINE; OXIDE; ELECTROCATALYSTS; ELECTRODE;
D O I
10.1002/slct.202300102
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of non-precious metals electrocatalysts for renewable energy and hydrogen production has been gaining increased attention. Serpent carbon grown from a cost-effective combustion process having large pores is employed as a substrate for metal doping (Fe-Ni@SC) by a simple solvothermal method. In an alkaline medium, Fe-Ni@SC/GC split water at 1.52 V, and the Tafel slope of 63 mV dec(-1) (Fe-Ni@SC) was found to be lower than IrO2 (92 mV dec(-1)). In a three-electrode system, Fe-Ni@SC/NF splits water at 1.48 V and exhibits a small overpotential of 252 mV at 10 mA cm(-2) that is stable for 150 h with a potential loss of 4.2 %. Excellent OER performances have been displayed by the robust Fe-Ni@SC catalyst, which has sufficient kinetics to address the sluggish water oxidation. The fragmented plates morphology of Fe-Ni@SC was useful for the transportation of ions and reduced traffic congestion during the electrochemical process. The solar water electrolyser splits water at 1.55 V, which illustrates the effectiveness of an optimised electrocatalyst for the conversion of solar energy to hydrogen production. Hence, Fe-Ni@SC can be utilised to generate huge amount of hydrogen at low cost.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Two-Step Synthesis of Cobalt Iron Alloy Nanoparticles Embedded in Nitrogen-Doped Carbon Nanosheets/Carbon Nanotubes for the Oxygen Evolution Reaction
    Liu, Yang
    Li, Feng
    Yang, Haidong
    Li, Jing
    Ma, Ping
    Zhu, Yan
    Ma, Jiantai
    CHEMSUSCHEM, 2018, 11 (14) : 2358 - 2366
  • [32] Engineering heterogeneous nickel-iron oxide/iron phosphate on P, N co-doped carbon fibers for efficient oxygen evolution reaction in neutral and alkaline solutions
    Fan, Xiaoming
    Ma, Yinxue
    Sun, Akang
    Zhang, Xiao
    Tang, Lin
    Guo, Jinxue
    SURFACES AND INTERFACES, 2021, 25
  • [33] Iron and cobalt co-doped nickel nitride in situ grown on carbon cloth for oxygen evolution reaction
    Chen, Zewei
    Zhu, Junmin
    Yuan, Zhixuan
    Zhou, Ming
    Jin, Yanshuo
    Chen, Jian
    Xie, Fangyan
    Wang, Nan
    Zhang, Xiyun
    Meng, Hui
    Zhang, Tao
    MATERIALS LETTERS, 2024, 354
  • [34] Boron, nitrogen co-doped biomass-derived carbon aerogel embedded nickel-cobalt-iron nanoparticles as a promising electrocatalyst for oxygen evolution reaction
    Lu, Runqing
    Sam, Daniel Kobina
    Wang, Wenbo
    Gong, Shanhe
    Liu, Jun
    Durairaj, Arulappan
    Li, Mengxian
    Lv, Xiaomeng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 613 : 126 - 135
  • [35] Ni nanoparticles embedded in N doped carbon nanotubes derived from a metal organic framework with improved performance for oxygen evolution reaction
    Han, Huijuan
    Chao, Shujun
    Yang, Xiaoli
    Wang, Xiaobing
    Wang, Kui
    Bai, Zhengyu
    Yang, Lin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (25) : 16149 - 16156
  • [36] MOF derived N-doped carbon coated CoP particle/carbon nanotube composite for efficient oxygen evolution reaction
    Wang, Xian
    Ma, Zuju
    Chai, Lulu
    Xu, Leqiong
    Zhu, Ziyi
    Hu, Yue
    Qian, Jinjie
    Huang, Shaoming
    CARBON, 2019, 141 : 643 - 651
  • [37] Amorphous nickel-iron oxides/carbon nanohybrids for an efficient and durable oxygen evolution reaction
    Li, Bo
    Chen, Shuangming
    Tian, Jie
    Gong, Ming
    Xu, Hangxun
    Song, Li
    NANO RESEARCH, 2017, 10 (11) : 3629 - 3637
  • [38] Electrocatalytic activity of iron and nickel phthalocyanines supported on multi-walled carbon nanotubes towards oxygen evolution reaction
    Abbaspour, Abdolkarim
    Mirahmadi, Ehsan
    ELECTROCHIMICA ACTA, 2013, 105 : 92 - 98
  • [39] Metal-organic framework derived iron-nickel sulfide nanorods for oxygen evolution reaction
    Ke, Wenchang
    Zhang, Ying
    Imbault, Alexander Luis
    Li, Yunhua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (40) : 20941 - 20949
  • [40] Ultrathin graphitic carbon nitride interface layer regulated nickel-iron oxyhydroxide stabilized on nickel foam for efficient oxygen evolution reaction
    Zhu, Haozhen
    Wang, Yuanqiang
    Xue, Zhili
    Wang, Ting
    Li, Jing
    Zhang, Guirong
    Rui, Yichuan
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 688