Preparation and Electrochemical Characterisation of an Iron-Nickel-Doped Sucrose-Derived Carbon Material for the Oxygen Evolution Reaction

被引:16
作者
Sangamithirai, Muthukumaran [1 ]
Mathi, Selvam [1 ]
Ashok, Venkatachalam [1 ]
Jayabharathi, Jayaraman [1 ]
机构
[1] Annamalai Univ, Dept Chem, Mat Sci Lab, Annamalainagar 608002, Tamil Nadu, India
关键词
Fe-Ni@SC; low Tafel slope; oxygen evolution reaction; serpent carbon; solvothermal synthesis; HIGHLY EFFICIENT; FACILE SYNTHESIS; WATER OXIDATION; NI; REDUCTION; CATALYSTS; ALKALINE; OXIDE; ELECTROCATALYSTS; ELECTRODE;
D O I
10.1002/slct.202300102
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of non-precious metals electrocatalysts for renewable energy and hydrogen production has been gaining increased attention. Serpent carbon grown from a cost-effective combustion process having large pores is employed as a substrate for metal doping (Fe-Ni@SC) by a simple solvothermal method. In an alkaline medium, Fe-Ni@SC/GC split water at 1.52 V, and the Tafel slope of 63 mV dec(-1) (Fe-Ni@SC) was found to be lower than IrO2 (92 mV dec(-1)). In a three-electrode system, Fe-Ni@SC/NF splits water at 1.48 V and exhibits a small overpotential of 252 mV at 10 mA cm(-2) that is stable for 150 h with a potential loss of 4.2 %. Excellent OER performances have been displayed by the robust Fe-Ni@SC catalyst, which has sufficient kinetics to address the sluggish water oxidation. The fragmented plates morphology of Fe-Ni@SC was useful for the transportation of ions and reduced traffic congestion during the electrochemical process. The solar water electrolyser splits water at 1.55 V, which illustrates the effectiveness of an optimised electrocatalyst for the conversion of solar energy to hydrogen production. Hence, Fe-Ni@SC can be utilised to generate huge amount of hydrogen at low cost.
引用
收藏
页数:11
相关论文
共 64 条
[1]   Tuning of Trifunctional NiCu Bimetallic Nanoparticles Confined in a Porous Carbon Network with Surface Composition and Local Structural Distortions for the Electrocatalytic Oxygen Reduction, Oxygen and Hydrogen Evolution Reactions [J].
Ahsan, Md Ariful ;
Santiago, Alain R. Puente ;
Hong, Yu ;
Zhang, Ning ;
Cano, Manuel ;
Rodriguez-Castellon, Enrique ;
Echegoyen, Luis ;
Sreenivasan, Sreeprasad T. ;
Noveron, Juan C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (34) :14688-14701
[2]   Ultrathin Graphene Layers Encapsulating Nickel Nanoparticles Derived Metal-Organic Frameworks for Highly Efficient Electrocatalytic Hydrogen and Oxygen Evolution Reactions [J].
Ai, Lunhong ;
Tian, Tian ;
Jiang, Jing .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (06) :4771-4777
[3]   XPS fitting model proposed to the study of Ni and La in deactivated FCC catalysts [J].
Amaya, Alvaro A. ;
Gonzalez, Carlos A. ;
Nino-Gomez, Martha E. ;
Martinez O, Fernando .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2019, 233 :5-10
[4]   Adsorption of sulfur dioxide on hematite and goethite particle surfaces [J].
Baltrusaitis, Jonas ;
Cwiertny, David M. ;
Grassian, Vicki H. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (41) :5542-5554
[5]   Optimization of Oxygen Evolution Reaction with Electroless Deposited Ni-P Catalytic Nanocoating [J].
Battiato, Sergio ;
Urso, Mario ;
Cosentino, Salvatore ;
Pellegrino, Anna Lucia ;
Mirabella, Salvo ;
Terrasi, Antonio .
NANOMATERIALS, 2021, 11 (11)
[6]   Electrical probing of endothelial cell behaviour on a fibronectin/polystyrene/thiol/gold electrode by Faradaic electrochemical impedance spectroscopy (EIS) [J].
Bouafsoun, Arnira ;
Helali, Saloua ;
Mebarek, Saida ;
Zeiller, Caroline ;
Prigent, Annie-France ;
Othmane, Ali ;
Kerkeni, Abdelhamid ;
Jaffrezic-Renault, Nicole ;
Ponsonnet, Laurence .
BIOELECTROCHEMISTRY, 2007, 70 (02) :401-407
[7]   Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability [J].
Cherevko, Serhiy ;
Geiger, Simon ;
Kasian, Olga ;
Kulyk, Nadiia ;
Grote, Jan-Philipp ;
Savan, Alan ;
Shrestha, Buddha Ratna ;
Merzlikin, Sergiy ;
Breitbach, Benjamin ;
Ludwig, Alfred ;
Mayrhofer, Karl J. J. .
CATALYSIS TODAY, 2016, 262 :170-180
[8]   Electrochemical dopamine sensor based on P-doped graphene: Highly active metal-free catalyst and metal catalyst support [J].
Chu, Ke ;
Wang, Fan ;
Zhao, Xiao-lin ;
Wang, Xin-wei ;
Tian, Ye .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 81 :452-458
[9]   EFFECT OF COPRECIPITATED METAL-IONS ON THE ELECTROCHEMISTRY OF NICKEL-HYDROXIDE THIN-FILMS - CYCLIC VOLTAMMETRY IN 1M KOH [J].
CORRIGAN, DA ;
BENDERT, RM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (03) :723-728
[10]   In Situ Fabrication of a Nickel/Molybdenum Carbide-Anchored N-Doped Graphene/CNT Hybrid: An Efficient (Pre)catalyst for OER and HER [J].
Das, Debanjan ;
Santra, Saswati ;
Nanda, Karuna Kar .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (41) :35025-35038