A Heterogeneous Graph Neural Network With Attribute Enhancement and Structure-Aware Attention

被引:12
|
作者
Fan, Shenghang [1 ]
Liu, Guanjun [2 ]
Li, Jian [1 ]
机构
[1] Zhejiang A&F Univ, Sch Math & Comp Sci, Hangzhou 311300, Peoples R China
[2] Tongji Univ, Minist Educ, Key Lab Embedded Syst & Serv Comp, Shanghai 201804, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Graph neural networks (GNNs); heterogeneous information networks (HINs); network representation learning;
D O I
10.1109/TCSS.2023.3239034
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Heterogeneous information network (HIN) has been applied in a wide variety of graph analysis tasks. At present, it is a trend of heterogeneous graph neural networks (HGNNs) to cast the meta-paths aside, since it solves the problem of structural information loss caused by artificially designed meta-paths. However, existing meta-path-free HGNNs fail to take into account that most node types in many HINs have no attributes, and they cannot make full use of sparse node attributes when applied to HINs with missing attributes. Furthermore, their computation of attention coefficients explores the correlations of node attributes while almost ignoring structural ones, which may limit the expression ability of the model and cause overfitting in model training. To alleviate these issues, we propose an HGNN with attribute enhancement and structure-aware attention (HGNN-AESA). First, we design an attribute enhancement module (AEM) to connect more useful attributed nodes to the target nodes. Specifically, AEM introduces a random walk with restart (RWR) strategy to obtain structural relevance scores of each node within its specific subgraph. The structural relevance scores are used to capture potentially influential attributed nodes in high-order neighborhood for each target node. Second, we propose heterogeneous structure-aware attention layers (HSALs) to learn node representations. HSALs follow a hierarchical attention framework, including node-level and type-level attention. The node-level attention aggregates feature (attribute) embeddings of same-type neighbors, and the relevant attention coefficients depend on the combination of node attributes and heterogeneous structural interventions. The type-level attention fuses all type-specific vector representations and generates the ultimate node embedding. Finally, extensive experiments on three different real-world HIN datasets demonstrate that our model outperforms state-of-the-art methods.
引用
收藏
页码:829 / 838
页数:10
相关论文
共 50 条
  • [21] Heterogeneous Graph Neural Network via Attribute Completion
    Jin, Di
    Huo, Cuiying
    Liang, Chundong
    Yang, Liang
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 391 - 400
  • [22] Unified structure-aware feature learning for Graph Convolutional Network
    Huang, Sujia
    Xiao, Shunxin
    Chen, Yuhong
    Yang, Jinbin
    Shi, Zhibin
    Tan, Yanchao
    Wang, Shiping
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 254
  • [23] Structure-Aware Multi-Hop Graph Convolution for Graph Neural Networks
    Li, Yang
    Tanaka, Yuichi
    IEEE ACCESS, 2022, 10 : 16624 - 16633
  • [24] RHINE: Relation Structure-Aware Heterogeneous Information Network Embedding
    Shi, Chuan
    Lu, Yuanfu
    Hu, Linmei
    Liu, Zhiyuan
    Ma, Huadong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (01) : 433 - 447
  • [25] GStarX: Explaining Graph Neural Networks with Structure-Aware Cooperative Games
    Zhang, Shichang
    Liu, Yozen
    Shah, Neil
    Sun, Yizhou
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [26] Position and structure-aware graph learning
    Ye, Guoqiang
    Song, Juan
    Feng, Mingtao
    Zhu, Guangming
    Shen, Peiyi
    Zhang, Liang
    Shah, Syed Afaq Ali
    Bennamoun, Mohammed
    NEUROCOMPUTING, 2023, 556
  • [27] GSEA: Global Structure-Aware Graph Neural Networks for Entity Alignment
    Wang, Cunda
    Wang, Weihua
    Liang, Qiuyu
    Yu, Jie
    Gao, Guanglai
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, PT II, NLPCC 2024, 2025, 15360 : 187 - 199
  • [28] SAMGAT: structure-aware multilevel graph attention networks for automatic rumor detection
    Li, Yafang
    Chu, Zhihua
    Jia, Caiyan
    Zu, Baokai
    PeerJ Computer Science, 2024, 10
  • [29] SAMGAT: structure-aware multilevel graph attention networks for automatic rumor detection
    Li, Yafang
    Chu, Zhihua
    Jia, Caiyan
    Zu, Baokai
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [30] Attribute-aware heterogeneous graph network for fashion compatibility prediction
    Zhou, Zhouyi
    Su, Zhuo
    Wang, Ruomei
    NEUROCOMPUTING, 2022, 495 : 62 - 74