Full waveform inversion based on inversion network reparameterized velocity

被引:11
作者
Jiang, Peng [1 ]
Wang, Qingyang [1 ]
Ren, Yuxiao [2 ]
Yang, Senlin [1 ]
Li, Ningbo [2 ]
机构
[1] Shandong Univ, Sch Qilu Transportat, Jinan, Peoples R China
[2] Shandong Univ, Geotech & Struct Engn Res Ctr, Jinan 250061, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
full waveform; inversion; numerical study; seismics; CONVOLUTIONAL NEURAL-NETWORK; REGULARIZATION;
D O I
10.1111/1365-2478.13292
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Seismic velocity plays an important role in imaging and identifying underground geology. Conventional seismic velocity inversion methods, like full waveform inversion, directly update the velocity model based on the misfit between the observed and synthetic data. However, seismic velocity inversion is a highly nonlinear process, and the inversion effect greatly relies on the initial inversion model. In this paper, we propose a novel network-domain full waveform inversion method. Different from the existing network-domain full waveform inversion methods, which use random or fixed numbers as network input, we reparameterize the low-dimensional acoustic velocity model in a high-dimensional inversion network parameter domain with seismic observed data as the network input. In this way, the physical information within the observed data can be directly encoded into the inversion parameters, leading to a better inversion effect than the current network-domain full waveform inversion method. Moreover, comparison experiments on the Society of Exploration Geophysicists and the European Association of Geoscientists and Engineers Overthrust model and the Marmousi model show the advantages of the proposed method over conventional full waveform inversion from the aspects of inversion accuracy, robustness to noisy data, and more complex geological structures. These advantages may benefit from the fact that reparameterization within the inversion network domain can empower the inversion process with the regularization ability of denoising and mitigating the cycle-skipping issue. In the end, the potential of the proposed method in terms of network initialization is further discussed.
引用
收藏
页码:52 / 67
页数:16
相关论文
共 50 条
[41]   An efficient plug-and-play regularization method for full waveform inversion [J].
Fu, Hongsun ;
Yang, Lu ;
Miao, Xinyue .
JOURNAL OF GEOPHYSICS AND ENGINEERING, 2023, 20 (06) :1140-1149
[42]   Preconditioning full-waveform inversion with efficient local correlation operators [J].
Wellington, Paul ;
Brossier, Romain ;
Virieux, Jean .
GEOPHYSICS, 2019, 84 (03) :R321-R332
[43]   Full Waveform Inversion: A Multiscale Approach to Tackle Gas Cloud Problem [J].
Prajapati, Srichand .
ICIPEG 2016: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTEGRATED PETROLEUM ENGINEERING AND GEOSCIENCES, 2017, :469-479
[44]   A Prior Regularized Full Waveform Inversion Using Generative Diffusion Models [J].
Wang, Fu ;
Huang, Xinquan ;
Alkhalifah, Tariq A. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 :1-11
[45]   Improved full-waveform inversion of normalised seismic wavefield data [J].
Kim, Hee Joon ;
Matsuoka, Toshifumi .
EXPLORATION GEOPHYSICS, 2006, 37 (01) :86-92
[46]   Wave-equation-based AVO inversion: A 1.5D elastic full-waveform inversion technique for improved reservoir characterization [J].
Haffinger, P. ;
Doulgeris, P. ;
Gisolf, A. .
Leading Edge, 2025, 44 (05) :415a1-415a9
[47]   Direct building background velocity field by plane-wave multi-source multi-scale full-waveform inversion [J].
Guo Yundong ;
Huang, Jianping ;
Cui, Chao ;
Li, Zhenchun ;
Wang, Ziying .
EXPLORATION GEOPHYSICS, 2020, 51 (03) :327-340
[48]   Monitoring fluid saturation in reservoirs using time-lapse full-waveform inversion [J].
Mardan, Amir ;
Giroux, Bernard ;
Fabien-Ouellet, Gabriel ;
Saberi, Mohammad Reza .
GEOPHYSICAL PROSPECTING, 2023, 71 (06) :1012-1029
[49]   Elastic waveform inversion using the finite-difference contrast source inversion method [J].
Zhou, Chen ;
Wang, Shoudong ;
Li, Hongliang ;
Cheng, Wanli .
EXPLORATION GEOPHYSICS, 2022, 53 (03) :300-313
[50]   Seismic crosshole full-waveform inversion of high-frequency SV-waves for glacial sediment characterization [J].
Beraus, Sarah ;
Koehn, Daniel ;
Bohlen, Thomas ;
Burschil, Thomas ;
Schuster, Bennet ;
Buness, Hermann ;
Gabriel, Gerald .
GEOPHYSICAL PROSPECTING, 2025, 73 (05) :1587-1605