Preparation and properties of ultra-high performance lightweight concrete

被引:5
|
作者
Pan, Huimin [1 ,2 ]
Yan, Shuaijun [1 ,2 ]
Zhao, Qingxin [1 ,2 ]
Wang, Dongli [3 ]
机构
[1] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao, Hebei, Peoples R China
[2] Yanshan Univ, Key Lab Green Construct & Intelligent Maintenance, Qinhuangdao, Hebei, Peoples R China
[3] Northeast Petr Univ Qinhuangdao, Qinhuangdao, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
early autogenous shrinkage; hollow glass microspheres; lightweight concrete; UN SDG 11; Sustainable cities and communities; AGE AUTOGENOUS SHRINKAGE; AGGREGATE; STRENGTH; CRACKING; UHPC; COMPOSITE; BEHAVIOR; IMPACT;
D O I
10.1680/jmacr.22.00034
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Based on orthogonal experiments, an ordinary Portland cement (OPC)-fly ash (FA)-silica fume (SF) ternary cementitious material system was developed. The ultra-high-strength lightweight concrete (UHPLC) with a strength exceeding 100 MPa was prepared using pottery sand (PS) and hollow glass microspheres (HGM) as the weight-reducing material and steel fibers as reinforcement. Through workability, apparent density, strength, and early autogenous shrinkage tests, as well as SEM examinations, the effect of various material parameters on the basic performance of UHPLC was investigated, and their mechanisms were explored. The results revealed the optimal mix ratio of OPC : FA : SF : PS : HGM = 1 : 0.200 : 0.133 : 0.533 : 0.067, a water-binder ratio of 0.16, and a volume ratio of steel fibers of 2%. Under steam curing at 90 degrees C for 48 h, the prepared UHPLC had an apparent density of 2031 kg/m(3), compressive/flexural strengths of 112/16 MPa, a slump/expansion of 260/590 mm, and specific strength of 0.055, achieving the goal of light weight and high strength. As the filler of composite materials, HGM can achieve lightweight and high strengthening of cement-based materials. HGM had a large water demand, increasing the autogenous shrinkage of UHPLC to a certain extent. The incorporation of steel fibers significantly increased the strength and apparent density of UHPLC, and its high elastic modulus inhibited the UHPLC shrinkage.
引用
收藏
页码:310 / 323
页数:14
相关论文
共 50 条
  • [41] Performance Evaluation of Ultra-high Performance Concrete (UHPC) and Ultra-high Performance Fibre Reinforced Concrete (UHPFRC) in Pavement Applications
    Rambabu, Dadi
    Sharma, Shashi Kant
    Akbar, M. Abdul
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (10) : 13685 - 13707
  • [42] The influence of steel fibre properties on the shrinkage of ultra-high performance fibre reinforced concrete
    Fang, Chengfeng
    Ali, Mohamed
    Xie, Tianyu
    Visintin, Phillip
    Sheikh, Abdul H.
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 242
  • [43] Properties and improvement of ultra-high performance concrete with coarse aggregates and polypropylene fibers after high-temperature damage
    Qian, Yunfeng
    Yang, Dingyi
    Xia, Yanghao
    Gao, Han
    Ma, Zhiming
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 364
  • [44] Influence of hollow glass microspheres on the performance of lightweight ultra-high performance concrete and mixture proportion optimization
    Chen, Zhiyuan
    Zhang, Siheng
    Zheng, Wanying
    Fan, Hongyu
    Yu, Demei
    Fu, Tengfei
    Wu, Xi
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 472
  • [45] Effects of autoclave curing and fly ash on mechanical properties of ultra-high performance concrete
    Chen, Tiefeng
    Gao, Xiaojian
    Ren, Miao
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 158 : 864 - 872
  • [46] Effect of Casting Position on Mechanical Performance of Ultra-High Performance Concrete
    Zhao, Sujing
    Bo, Yiheng
    MATERIALS, 2022, 15 (02)
  • [47] A review on damage mechanism of ultra-high performance concrete under loading and erosion
    Li, Yang
    Zhang, Gaozhan
    Yang, Jun
    Zhang, Jian
    Ding, Qingjun
    MATERIALS TODAY COMMUNICATIONS, 2023, 35
  • [48] Effect of natural fibers on thermal spalling resistance of ultra-high performance concrete
    Zhang, Dong
    Tan, Kang Hai
    Dasari, Aravind
    Weng, Yiwei
    CEMENT & CONCRETE COMPOSITES, 2020, 109
  • [49] EFFECT OF LOW PRESSURE ON THE PROPERTIES AND MICROSTRUCTURE OF ULTRA-HIGH PERFORMANCE CONCRETE
    Wu, Xiong
    Yang, Wen
    Luo, Yaoling
    Yan, Xinyi
    Xie, Yuhao
    CERAMICS-SILIKATY, 2021, 65 (04) : 395 - 400
  • [50] Mechanical degradation of ultra-high performance concrete under flexural fatigue loading
    Cerqueira, Nabila Rezende de Almeida
    Monteiro, Vitor Moreira de Alencar
    Souza, Felipe Rodrigues de
    Cardoso, Daniel Carlos Taissum
    Silva, Flavio de Andrade
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 391