Some numerical radius inequality for several semi-Hilbert space operators

被引:6
作者
Conde, Cristian [1 ,2 ]
Feki, Kais [3 ,4 ]
机构
[1] Univ Nacl Gral Sarmiento, Inst Ciencias, JM Gutierrez 1150,B1613GSX, Los Polvorines, Argentina
[2] Consejo Nacl Invest Cient & Tecn, JM Gutierrez 1150,B1613GSX, Los Polvorines, Argentina
[3] Univ Monastir, Fac Econ Sci & Management Mahdia, Mahdia, Tunisia
[4] Univ Sfax, Fac Sci Sfax, Lab Phys Math & Applicat LR 13 ES 22, Sfax, Tunisia
关键词
Positive operator; A-adjoint operator; A-numerical radius; inequality;
D O I
10.1080/03081087.2022.2050883
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with the generalized numerical radius of linear operators acting on a complex Hilbert space H, which are bounded with respect to the seminorm induced by a positive operator A on H. Here A is not assumed to be invertible. Mainly, if we denote by omega(A)(.) and omega(.) the generalized and the classical numerical radii respectively, we prove that for every A-bounded operator T we have omega(A)(T) = omega(A(1/2)T(A(1/2))(dagger)), where (A(1/2))(dagger) is the Moore-Penrose inverse of A(1/2). In addition, several new inequalities involving omega(A)(.) for single and several operators are established. In particular, by using new techniques, we cover and improve some recent results due to Najafi [Linear Algebra Appl. 2020;588:489-496].
引用
收藏
页码:1054 / 1071
页数:18
相关论文
共 50 条
[41]   INEQUALITIES FOR THE WEIGHTED A-NUMERICAL RADIUS OF SEMI-HILBERTIAN SPACE OPERATORS [J].
Gao, Fugen ;
Liu, Xianqin .
OPERATORS AND MATRICES, 2023, 17 (02) :343-354
[42]   Further A-numerical radius inequalities for semi-Hilbertian space operators [J].
Gourty, Abdelmajid ;
Ighachane, Mohamed Amine ;
Kittaneh, Fuad .
JOURNAL OF ANALYSIS, 2025,
[43]   Some Upper Bounds for the Davis–Wielandt Radius of Hilbert Space Operators [J].
Ali Zamani ;
Khalid Shebrawi .
Mediterranean Journal of Mathematics, 2020, 17
[44]   A-numerical radius and A-norm inequalities for semi-Hilbertian space operators [J].
Qiao, Hongwei ;
Hai, Guojun ;
Bai, Eburilitu .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21) :6891-6907
[45]   FURTHER IMPROVEMENTS OF GENERALIZED NUMERICAL RADIUS INEQUALITIES FOR SEMI-HILBERTIAN SPACE OPERATORS [J].
Feki, Kais .
MISKOLC MATHEMATICAL NOTES, 2022, 23 (02) :651-665
[46]   Spectral radius inequalities for Hilbert space operators [J].
Kittaneh, F .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (02) :385-390
[47]   Some A-spectral radius inequalities for A-bounded Hilbert space operators [J].
Kais Feki .
Banach Journal of Mathematical Analysis, 2022, 16
[48]   Some A-spectral radius inequalities for A-bounded Hilbert space operators [J].
Feki, Kais .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (02)
[49]   Some Upper Bounds for the Davis-Wielandt Radius of Hilbert Space Operators [J].
Zamani, Ali ;
Shebrawi, Khalid .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (01)
[50]   Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces [J].
Moslehian, M. S. ;
Xu, Q. ;
Zamani, A. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 591 :299-321