Some numerical radius inequality for several semi-Hilbert space operators

被引:6
作者
Conde, Cristian [1 ,2 ]
Feki, Kais [3 ,4 ]
机构
[1] Univ Nacl Gral Sarmiento, Inst Ciencias, JM Gutierrez 1150,B1613GSX, Los Polvorines, Argentina
[2] Consejo Nacl Invest Cient & Tecn, JM Gutierrez 1150,B1613GSX, Los Polvorines, Argentina
[3] Univ Monastir, Fac Econ Sci & Management Mahdia, Mahdia, Tunisia
[4] Univ Sfax, Fac Sci Sfax, Lab Phys Math & Applicat LR 13 ES 22, Sfax, Tunisia
关键词
Positive operator; A-adjoint operator; A-numerical radius; inequality;
D O I
10.1080/03081087.2022.2050883
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with the generalized numerical radius of linear operators acting on a complex Hilbert space H, which are bounded with respect to the seminorm induced by a positive operator A on H. Here A is not assumed to be invertible. Mainly, if we denote by omega(A)(.) and omega(.) the generalized and the classical numerical radii respectively, we prove that for every A-bounded operator T we have omega(A)(T) = omega(A(1/2)T(A(1/2))(dagger)), where (A(1/2))(dagger) is the Moore-Penrose inverse of A(1/2). In addition, several new inequalities involving omega(A)(.) for single and several operators are established. In particular, by using new techniques, we cover and improve some recent results due to Najafi [Linear Algebra Appl. 2020;588:489-496].
引用
收藏
页码:1054 / 1071
页数:18
相关论文
共 50 条
[31]   New upper bounds for the numerical radius of Hilbert space operators [J].
Bhunia, Pintu ;
Paul, Kallol .
BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 167
[32]   Inequalities involving norm and numerical radius of Hilbert space operators [J].
Goudarzi, Nasrollah ;
Heydarbeygi, Zahra .
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2024, 65 (01) :45-52
[33]   On some numerical radius inequalities for normal operators in Hilbert spaces [J].
Guesba, Messaoud .
JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (02) :463-470
[34]   IMPROVEMENTS OF A-NUMERICAL RADIUS FOR SEMI-HILBERTIAN SPACE OPERATORS [J].
Qiao, Hongwei ;
Hai, Guojun ;
Chen, Alatancang .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (02) :791-810
[36]   Further norm and numerical radius inequalities for sum of Hilbert space operators [J].
Afraz, Davood ;
Lashkaripour, Ramatollah ;
Bakherad, Mojtaba .
FILOMAT, 2024, 38 (09) :3235-3242
[37]   Further refinements of generalized numerical radius inequalities for Hilbert space operators [J].
Hajmohamadi, Monire ;
Lashkaripour, Rahmatollah ;
Bakherad, Mojtaba .
GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (01) :83-92
[38]   Novel p-numerical radius inequalities for Hilbert space operators [J].
Ahlem Benmakhlouf ;
Abdelkader Frakis ;
Fuad Kittaneh ;
Abdelaziz Mennouni .
ANNALI DELL'UNIVERSITA' DI FERRARA, 2025, 71 (3)
[39]   Numerical Radius Inequalities for Products and Sums of Semi-Hilbertian Space Operators [J].
Bhunia, Pintu ;
Feki, Kais ;
Paul, Kallol .
FILOMAT, 2022, 36 (04) :1415-1431
[40]   Some sharp bounds for the Hilbert-Schmidt numerical radius of operators [J].
Soumia, Aici ;
Abdelkader, Frakis .
JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2024, 27 (07) :1481-1489