Some numerical radius inequality for several semi-Hilbert space operators

被引:5
作者
Conde, Cristian [1 ,2 ]
Feki, Kais [3 ,4 ]
机构
[1] Univ Nacl Gral Sarmiento, Inst Ciencias, JM Gutierrez 1150,B1613GSX, Los Polvorines, Argentina
[2] Consejo Nacl Invest Cient & Tecn, JM Gutierrez 1150,B1613GSX, Los Polvorines, Argentina
[3] Univ Monastir, Fac Econ Sci & Management Mahdia, Mahdia, Tunisia
[4] Univ Sfax, Fac Sci Sfax, Lab Phys Math & Applicat LR 13 ES 22, Sfax, Tunisia
关键词
Positive operator; A-adjoint operator; A-numerical radius; inequality;
D O I
10.1080/03081087.2022.2050883
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with the generalized numerical radius of linear operators acting on a complex Hilbert space H, which are bounded with respect to the seminorm induced by a positive operator A on H. Here A is not assumed to be invertible. Mainly, if we denote by omega(A)(.) and omega(.) the generalized and the classical numerical radii respectively, we prove that for every A-bounded operator T we have omega(A)(T) = omega(A(1/2)T(A(1/2))(dagger)), where (A(1/2))(dagger) is the Moore-Penrose inverse of A(1/2). In addition, several new inequalities involving omega(A)(.) for single and several operators are established. In particular, by using new techniques, we cover and improve some recent results due to Najafi [Linear Algebra Appl. 2020;588:489-496].
引用
收藏
页码:1054 / 1071
页数:18
相关论文
共 50 条
  • [21] Upper Bounds for the Numerical Radius of Hilbert Space Operators
    Jaafari, Elahe
    Asgari, Mohammad Sadegh
    Hosseini, Mohsen Shah
    Moosavi, Baharak
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2024, 48 (02) : 237 - 245
  • [22] Numerical Radius Inequalities for Commutators of Hilbert Space Operators
    Hirzallah, Omar
    Kittaneh, Fuad
    Shebrawi, Khalid
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (07) : 739 - 749
  • [23] Furtherance of numerical radius inequalities of Hilbert space operators
    Pintu Bhunia
    Kallol Paul
    Archiv der Mathematik, 2021, 117 : 537 - 546
  • [24] Furtherance of numerical radius inequalities of Hilbert space operators
    Bhunia, Pintu
    Paul, Kallol
    ARCHIV DER MATHEMATIK, 2021, 117 (05) : 537 - 546
  • [25] REFINEMENT OF SEMINORM AND NUMERICAL RADIUS INEQUALITIES OF SEMI-HILBERTIAN SPACE OPERATORS
    Bhunia, Pintu
    Nayak, Raj Kumar
    Paul, Kallol
    MATHEMATICA SLOVACA, 2022, 72 (04) : 969 - 976
  • [26] Improvement of A-Numerical Radius Inequalities of Semi-Hilbertian Space Operators
    Pintu Bhunia
    Raj Kumar Nayak
    Kallol Paul
    Results in Mathematics, 2021, 76
  • [27] SomeA-numerical radius inequalities for semi-Hilbertian space operators
    Chandra Rout, Nirmal
    Sahoo, Satyajit
    Mishra, Debasisha
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05) : 980 - 996
  • [28] Improvement of A-Numerical Radius Inequalities of Semi-Hilbertian Space Operators
    Bhunia, Pintu
    Nayak, Raj Kumar
    Paul, Kallol
    RESULTS IN MATHEMATICS, 2021, 76 (03)
  • [29] New upper bounds for the numerical radius of Hilbert space operators
    Bhunia, Pintu
    Paul, Kallol
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 167
  • [30] On some numerical radius inequalities for normal operators in Hilbert spaces
    Guesba, Messaoud
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (02) : 463 - 470