Some numerical radius inequality for several semi-Hilbert space operators

被引:6
作者
Conde, Cristian [1 ,2 ]
Feki, Kais [3 ,4 ]
机构
[1] Univ Nacl Gral Sarmiento, Inst Ciencias, JM Gutierrez 1150,B1613GSX, Los Polvorines, Argentina
[2] Consejo Nacl Invest Cient & Tecn, JM Gutierrez 1150,B1613GSX, Los Polvorines, Argentina
[3] Univ Monastir, Fac Econ Sci & Management Mahdia, Mahdia, Tunisia
[4] Univ Sfax, Fac Sci Sfax, Lab Phys Math & Applicat LR 13 ES 22, Sfax, Tunisia
关键词
Positive operator; A-adjoint operator; A-numerical radius; inequality;
D O I
10.1080/03081087.2022.2050883
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with the generalized numerical radius of linear operators acting on a complex Hilbert space H, which are bounded with respect to the seminorm induced by a positive operator A on H. Here A is not assumed to be invertible. Mainly, if we denote by omega(A)(.) and omega(.) the generalized and the classical numerical radii respectively, we prove that for every A-bounded operator T we have omega(A)(T) = omega(A(1/2)T(A(1/2))(dagger)), where (A(1/2))(dagger) is the Moore-Penrose inverse of A(1/2). In addition, several new inequalities involving omega(A)(.) for single and several operators are established. In particular, by using new techniques, we cover and improve some recent results due to Najafi [Linear Algebra Appl. 2020;588:489-496].
引用
收藏
页码:1054 / 1071
页数:18
相关论文
共 50 条
[21]   REFINING NUMERICAL RADIUS INEQUALITIES OF HILBERT SPACE OPERATORS [J].
Khorasani, Mohammad Ali Shiran ;
Heydarbeygi, Zahra .
MATEMATICKI VESNIK, 2023, 75 (01) :50-57
[22]   Numerical Radius Inequalities for Commutators of Hilbert Space Operators [J].
Hirzallah, Omar ;
Kittaneh, Fuad ;
Shebrawi, Khalid .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (07) :739-749
[23]   Furtherance of numerical radius inequalities of Hilbert space operators [J].
Pintu Bhunia ;
Kallol Paul .
Archiv der Mathematik, 2021, 117 :537-546
[24]   Upper Bounds for the Numerical Radius of Hilbert Space Operators [J].
Jaafari, Elahe ;
Asgari, Mohammad Sadegh ;
Hosseini, Mohsen Shah ;
Moosavi, Baharak .
SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2024, 48 (02) :237-245
[25]   Furtherance of numerical radius inequalities of Hilbert space operators [J].
Bhunia, Pintu ;
Paul, Kallol .
ARCHIV DER MATHEMATIK, 2021, 117 (05) :537-546
[26]   REFINED INEQUALITIES FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS [J].
Bhunia, Pintu ;
Jana, Suvendu ;
Paul, Kallol .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2025, 55 (02) :323-332
[27]   REFINEMENT OF SEMINORM AND NUMERICAL RADIUS INEQUALITIES OF SEMI-HILBERTIAN SPACE OPERATORS [J].
Bhunia, Pintu ;
Nayak, Raj Kumar ;
Paul, Kallol .
MATHEMATICA SLOVACA, 2022, 72 (04) :969-976
[28]   Improvement of A-Numerical Radius Inequalities of Semi-Hilbertian Space Operators [J].
Pintu Bhunia ;
Raj Kumar Nayak ;
Kallol Paul .
Results in Mathematics, 2021, 76
[29]   SomeA-numerical radius inequalities for semi-Hilbertian space operators [J].
Chandra Rout, Nirmal ;
Sahoo, Satyajit ;
Mishra, Debasisha .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05) :980-996
[30]   Improvement of A-Numerical Radius Inequalities of Semi-Hilbertian Space Operators [J].
Bhunia, Pintu ;
Nayak, Raj Kumar ;
Paul, Kallol .
RESULTS IN MATHEMATICS, 2021, 76 (03)