Some numerical radius inequality for several semi-Hilbert space operators

被引:6
作者
Conde, Cristian [1 ,2 ]
Feki, Kais [3 ,4 ]
机构
[1] Univ Nacl Gral Sarmiento, Inst Ciencias, JM Gutierrez 1150,B1613GSX, Los Polvorines, Argentina
[2] Consejo Nacl Invest Cient & Tecn, JM Gutierrez 1150,B1613GSX, Los Polvorines, Argentina
[3] Univ Monastir, Fac Econ Sci & Management Mahdia, Mahdia, Tunisia
[4] Univ Sfax, Fac Sci Sfax, Lab Phys Math & Applicat LR 13 ES 22, Sfax, Tunisia
关键词
Positive operator; A-adjoint operator; A-numerical radius; inequality;
D O I
10.1080/03081087.2022.2050883
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with the generalized numerical radius of linear operators acting on a complex Hilbert space H, which are bounded with respect to the seminorm induced by a positive operator A on H. Here A is not assumed to be invertible. Mainly, if we denote by omega(A)(.) and omega(.) the generalized and the classical numerical radii respectively, we prove that for every A-bounded operator T we have omega(A)(T) = omega(A(1/2)T(A(1/2))(dagger)), where (A(1/2))(dagger) is the Moore-Penrose inverse of A(1/2). In addition, several new inequalities involving omega(A)(.) for single and several operators are established. In particular, by using new techniques, we cover and improve some recent results due to Najafi [Linear Algebra Appl. 2020;588:489-496].
引用
收藏
页码:1054 / 1071
页数:18
相关论文
共 33 条
[1]   A generalization of the numerical radius [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 569 :323-334
[2]   Metric properties of projections in semi-Hilbertian spaces [J].
Arias, M. Laura ;
Corach, Gustavo ;
Gonzalez, M. Celeste .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (01) :11-28
[3]   Partial isometries in semi-Hilbertian spaces [J].
Arias, M. Laura ;
Corach, Gustavo ;
Gonzalez, M. Celeste .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1460-1475
[4]   Closed operators in semi-Hilbertian spaces [J].
Baklouti, Hamadi ;
Namouri, Sirine .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20) :5847-5858
[5]  
Baklouti H, 2020, LINEAR MULTILINEAR A, V68, P845, DOI 10.1080/03081087.2019.1593925
[6]   Joint numerical ranges of operators in semi-Hilbertian spaces [J].
Baklouti, Hamadi ;
Feki, Kais ;
Ahmed, Ould Ahmed Mahmoud Sid .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 555 :266-284
[7]   Improvement of A-Numerical Radius Inequalities of Semi-Hilbertian Space Operators [J].
Bhunia, Pintu ;
Nayak, Raj Kumar ;
Paul, Kallol .
RESULTS IN MATHEMATICS, 2021, 76 (03)
[8]   Some improvements of numerical radius inequalities of operators and operator matrices [J].
Bhunia, Pintu ;
Paul, Kallol .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (10) :1995-2013
[9]  
Bhunia P, 2020, ELECTRON J LINEAR AL, V36
[10]   A-Numerical Radius Orthogonality and Parallelism of Semi-Hilbertian Space Operators and Their Applications [J].
Bhunia, Pintu ;
Feki, Kais ;
Paul, Kallol .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (02) :435-457