Aiena's local spectral theory for a block matrix linear relations through localized SVEP

被引:0
作者
Ammar, Aymen [1 ]
Bouchekoua, Ameni [1 ]
Lazrag, Nawrez [1 ]
机构
[1] Univ Sfax, Fac Sci Sfax, Dept Math, Soukra Rd Km 3-5,BP 1171, Sfax 3000, Tunisia
关键词
Matrix of linear relations; Local spectral; Spectra; SVEP; OPERATOR MATRICES;
D O I
10.1007/s12215-021-00699-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The issue of the single-valued extension property (abbreviated SVEP) for linear operators introduced by Aiena (Fredholm and local spectral theory, with applications to multipliers, Kluwer Academic Publishers, Dordrecht, 2004) and (Fredholm and local spectral theory II. With application to Weyl-type theorems, Springer, Cham, 2018), motivates several authors to develope this notion for a block linear operators matrices. In this paper, enlightened by the study of Ammar et al. (Mediterr J Math 18(2):1-27, 2021), we investigate a few properties of the local spectra of a 2 x 2 block matrix of linear relations. Besides, by the new sets originating from the SVEP, we give the necessary and sufficient conditions to characterize the spectra and the essential spectra.
引用
收藏
页码:913 / 944
页数:32
相关论文
共 21 条
  • [1] Fredholm and Local Spectral Theory II: With Application to Weyl-Type Theorems
    Aiena, P.
    [J]. FREDHOLM AND LOCAL SPECTRAL THEORY II: WITH APPLICATION TO WEYL-TYPE THEOREMS, 2018, 2235 : 1 - 544
  • [2] Aiena P., 2004, FREDHOLM LOCAL SPECT
  • [3] Aiena P., 2015, FUNCT ANAL APPROX CO, V7, P9
  • [4] SVEP and local spectral radius formula for unbounded operators
    Aiena, Pietro
    Trapani, Camillo
    Triolo, Salvatore
    [J]. FILOMAT, 2014, 28 (02) : 263 - 273
  • [5] On the essential spectra of some matrix of linear relations
    Alvarez, Teresa
    Ammar, Aymen
    Jeribi, Aref
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (05) : 620 - 644
  • [6] Ammar A., 2016, ARAB J MATH SCI, V22, P59
  • [7] The Local Spectral Theory for Linear Relations Involving SVEP
    Ammar, Aymen
    Bouchekoua, Ameni
    Jeribi, Aref
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (02)
  • [8] Ammar A, 2020, J PSEUDO-DIFFER OPER, V11, P879, DOI 10.1007/s11868-019-00300-7
  • [9] Sequence of Multivalued Linear Operators Converging in the Generalized Sense
    Ammar, Aymen
    Jeribi, Aref
    Lazrag, Nawrez
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (06) : 1697 - 1729
  • [10] Some results on semi-Fredholm perturbations of multivalued linear operators
    Ammar, Aymen
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (07) : 1311 - 1332