Application of fractional theory in quantum back propagation neural network

被引:7
作者
Dong, Yumin [1 ]
Li, Xiang [1 ]
Zhang, Jinlei [1 ]
Li, Ziyi [1 ]
Hou, Dong [1 ]
机构
[1] Chongqing Normal Univ, Coll Comp & Informat Sci, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
activation function; fractional‐ order theory; fractional quantum BP neural network; neural network; DYNAMIC-ANALYSIS; ORDER; CALCULUS;
D O I
10.1002/mma.7550
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by applying the theory of fractional calculus to quantum back propagation (BP) neural network, a quantum BP algorithm based on the definition of fractional Grunwald-Letnikoff (G-L) is proposed. We choose the Sigmoid linear superposition function to replace the activation function of the traditional neural network to construct a fractional quantum BP neural network structure. Experimental results prove that this algorithm improves the convergence speed of the network and reduces the convergence error.
引用
收藏
页码:3080 / 3090
页数:11
相关论文
共 38 条
  • [1] Control of a 3-RRR Planar Parallel Robot Using Fractional Order PID Controller
    Al-Mayyahi, Auday
    Aldair, Ammar A.
    Chatwin, Chris
    [J]. INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2020, 17 (06) : 822 - 836
  • [2] ALOFI A, 2014, DISCRETE DYN NAT SOC, V2014
  • [3] Fractional-Order Deep Backpropagation Neural Network
    Bao, Chunhui
    Pu, Yifei
    Zhang, Yi
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2018, 2018
  • [4] A closed form expression for the Gaussian-based Caputo-Fabrizio fractional derivative for signal processing applications
    Cruz-Duarte, Jorge M.
    Rosales-Garcia, Juan
    Rodrigo Correa-Cely, C.
    Garcia-Perez, Arturo
    Gabriel Avina-Cervantes, Juan
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 61 : 138 - 148
  • [5] Daftardar-Gejji V., 2013, FRACTIONAL CALCULUS
  • [6] Fractional Order Controller Design for A Flexible Link Manipulator Robot
    Delavari, Hadi
    Lanusse, Patrick
    Sabatier, Jocelyn
    [J]. ASIAN JOURNAL OF CONTROL, 2013, 15 (03) : 783 - 795
  • [7] FRACTIONAL ORDER THEORY OF THERMOELASTIC DIFFUSION
    Ezzat, Magdy A.
    Fayik, Mohsen A.
    [J]. JOURNAL OF THERMAL STRESSES, 2011, 34 (08) : 851 - 872
  • [8] Fourier J., 1878, ANAL THEORY HEAT
  • [9] Gonzalez EA, 2015, 2015 16TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), P147, DOI 10.1109/CarpathianCC.2015.7145064
  • [10] Gorenflo R., 1997, FRACTALS FRACTIONAL, V378, P223