Multi-Grained feature aggregation based on Transformer for unsupervised person re-identification

被引:0
|
作者
Liu, Zhongmin [1 ]
Zhang, Changkai [1 ]
机构
[1] Lanzhou Univ Technol, Sch Elect Engn & Informat Engn, Lanzhou 730050, Gansu, Peoples R China
来源
CONTROL ENGINEERING AND APPLIED INFORMATICS | 2024年 / 26卷 / 01期
关键词
Feature Aggregation; Multi-Grained Features; Unsupervised Learning; Person Re- Identification; Attention Mechanism; ATTENTION NETWORK;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Person re-identification aims to retrieve specific person targets across different surveillance cameras. Due to problems such as posture changes, object occlusion, and background interference, the person re-identification effect is poor. A multi-grained feature aggregation unsupervised person reidentification based on Transformer is proposed to make full use of the extracted person features. First, a Dual-Channel Attention module is designed to enable the network to adaptively adjust the receptive field size based on multiple scales of input information, facilitating the capture of connections between different parts of the person's body. This enhances the network's ability to extract person feature information, enabling it to obtain more critical image information and output more representative person expression features. Next, an Explicit Visual Center module is proposed to capture global information and aggregate essential local information, strengthening the network's feature representation and thereby improving the model's generalization capability. Finally, validation are conducted on popular datasets such as Market1501,DukeMTMC-reID, and MSMT17. The results demonstrate that the improved model achieves higher performance metrics, yielding greater recognition accuracy and better representation of person features. Code is available at https://gitee.com/zhchkk/mgfa
引用
收藏
页码:72 / 82
页数:11
相关论文
共 50 条
  • [1] Transformer-based Contrastive Learning for Unsupervised Person Re-Identification
    Tao, Yusheng
    Zhang, Jian
    Chen, Tianquan
    Wang, Yuqing
    Zhu, Yuesheng
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [2] Hierarchical Attentive Feature Aggregation for Person Re-Identification
    Dong, Husheng
    Lu, Ping
    IEEE ACCESS, 2024, 12 : 55711 - 55725
  • [3] Hybrid feature constraint with clustering for unsupervised person re-identification
    Si, Tongzhen
    He, Fazhi
    Li, Penglei
    VISUAL COMPUTER, 2023, 39 (10) : 5121 - 5133
  • [4] Hybrid feature constraint with clustering for unsupervised person re-identification
    Tongzhen Si
    Fazhi He
    Penglei Li
    The Visual Computer, 2023, 39 : 5121 - 5133
  • [5] Camera Invariant Feature Learning for Unsupervised Person Re-Identification
    Pang, Zhiqi
    Zhao, Lingling
    Liu, Qiuyang
    Wang, Chunyu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6171 - 6182
  • [6] Person Re-identification with Multi-stage Channel Feature Aggregation
    Guo, Hubo
    Li, Xin
    Wang, Qiang
    Zhang, Meiling
    Huang, Zhihong
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2024, PT II, 2025, 15202 : 117 - 130
  • [7] Robust feature mining transformer for occluded person re-identification
    Yang, Zhenzhen
    Chen, Yanan
    Yang, Yongpeng
    Chen, Yajie
    DIGITAL SIGNAL PROCESSING, 2023, 141
  • [8] Person re-identification based on multi-scale feature learning
    Li, Yueying
    Liu, Li
    Zhu, Lei
    Zhang, Huaxiang
    KNOWLEDGE-BASED SYSTEMS, 2021, 228
  • [9] Unsupervised Tracklet Person Re-Identification
    Li, Minxian
    Zhu, Xiatian
    Gong, Shaogang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (07) : 1770 - 1782
  • [10] Feature Completion Transformer for Occluded Person Re-Identification
    Wang, Tao
    Liu, Mengyuan
    Liu, Hong
    Li, Wenhao
    Ban, Miaoju
    Guo, Tianyu
    Li, Yidi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 8529 - 8542