nanofluid;
machine learning;
heat transfer augmentation;
viscosity;
thermal conductivity;
specific heat capacity;
ABSORPTION SOLAR COLLECTOR;
SUPPORT VECTOR REGRESSION;
PULSED-LASER ABLATION;
THERMAL-CONDUCTIVITY;
TRANSFER PERFORMANCE;
TRANSFER ENHANCEMENT;
NEURAL-NETWORK;
PRESSURE-DROP;
MAGNETIC NANOFLUIDS;
NUMERICAL-ANALYSIS;
D O I:
10.3390/en17061351
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
This present review explores the application of artificial intelligence (AI) methods in analysing the prediction of thermophysical properties of nanofluids. Nanofluids, colloidal solutions comprising nanoparticles dispersed in various base fluids, have received significant attention for their enhanced thermal properties and broad application in industries ranging from electronics cooling to renewable energy systems. In particular, nanofluids' complexity and non-linear behaviour necessitate advanced predictive models in heat transfer applications. The AI techniques, which include genetic algorithms (GAs) and machine learning (ML) methods, have emerged as powerful tools to address these challenges and offer novel alternatives to traditional mathematical and physical models. Artificial Neural Networks (ANNs) and other AI algorithms are highlighted for their capacity to process large datasets and identify intricate patterns, thereby proving effective in predicting nanofluid thermophysical properties (e.g., thermal conductivity and specific heat capacity). This review paper presents a comprehensive overview of various published studies devoted to the thermal behaviour of nanofluids, where AI methods (like ANNs, support vector regression (SVR), and genetic algorithms) are employed to enhance the accuracy of predictions of their thermophysical properties. The reviewed works conclusively demonstrate the superiority of AI models over the classical approaches, emphasizing the role of AI in advancing research for nanofluids used in heat transfer applications.
机构:
Bharathidasan Univ, Bishop Heber Coll, PG & Res Dept Phys, Tiruchirappalli 620 017, Tamil Nadu, IndiaBharathidasan Univ, Bishop Heber Coll, PG & Res Dept Phys, Tiruchirappalli 620 017, Tamil Nadu, India
Vidhya, R.
Balakrishnan, T.
论文数: 0引用数: 0
h-index: 0
机构:
Bharathidasan Univ, Periyar EVR Coll, PG & Res Dept Phys, Crystal Growth Lab, Tiruchirappalli 620 023, Tamil Nadu, IndiaBharathidasan Univ, Bishop Heber Coll, PG & Res Dept Phys, Tiruchirappalli 620 017, Tamil Nadu, India
Balakrishnan, T.
Kumar, B. Suresh
论文数: 0引用数: 0
h-index: 0
机构:
Anna Univ, K Ramakrishnan Coll Technol, Tiruchirappalli 621 112, Tamil Nadu, IndiaBharathidasan Univ, Bishop Heber Coll, PG & Res Dept Phys, Tiruchirappalli 620 017, Tamil Nadu, India
机构:
Univ Malaysia Pahang, Fac Mech Engn, Pekan 26600, Pahang, Malaysia
Univ Malaysia Pahang, Automot Engn Ctr, Pekan 26600, Pahang, Malaysia
Ctr Excellence Adv Res Fluid Flow, Lebuhraya Tun Razak, Kuantan 26300, Pahang, MalaysiaUniv Malaysia Pahang, Fac Mech Engn, Pekan 26600, Pahang, Malaysia
Azmi, W. H.
Zainon, S. N. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Pahang, Fac Mech Engn, Pekan 26600, Pahang, MalaysiaUniv Malaysia Pahang, Fac Mech Engn, Pekan 26600, Pahang, Malaysia
Zainon, S. N. M.
Hamid, K. A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Pahang, Fac Mech Engn, Pekan 26600, Pahang, MalaysiaUniv Malaysia Pahang, Fac Mech Engn, Pekan 26600, Pahang, Malaysia
Hamid, K. A.
Mamat, R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaysia Pahang, Fac Mech Engn, Pekan 26600, Pahang, Malaysia
Univ Malaysia Pahang, Automot Engn Ctr, Pekan 26600, Pahang, Malaysia
Ctr Excellence Adv Res Fluid Flow, Lebuhraya Tun Razak, Kuantan 26300, Pahang, MalaysiaUniv Malaysia Pahang, Fac Mech Engn, Pekan 26600, Pahang, Malaysia