Nearly homogeneous and isotropic turbulence generated by the interaction of supersonic jets

被引:1
作者
Mori, Takahiro [1 ]
Watanabe, Tomoaki [2 ]
Nagata, Koji [3 ]
机构
[1] Nagoya Univ, Dept Aerosp Engn, Nagoya, Aichi 4648603, Japan
[2] Nagoya Univ, Educ & Res Ctr Flight Engn, Nagoya, Aichi 4648603, Japan
[3] Kyoto Univ, Dept Mech Engn & Sci, Kyoto 6158530, Japan
基金
日本学术振兴会;
关键词
GRID TURBULENCE; VELOCITY-MEASUREMENTS; BOUNDARY-LAYERS; DECAY; FIELD;
D O I
10.1007/s00348-024-03764-6
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study reports the development and characterization of a multiple-supersonic-jet wind tunnel designed to investigate the decay of nearly homogeneous and isotropic turbulence whose generation process is strongly influenced by fluid compressibility. The interaction of 36 supersonic jets generates turbulence that decays in the streamwise direction. The velocity field is measured with particle image velocimetry by seeding tracer particles with ethanol condensation. Various velocity statistics are evaluated to diagnose decaying turbulence generated by the supersonic jet interaction. The flow is initially inhomogeneous and anisotropic and possesses intermittent large-scale velocity fluctuations. The flow evolves into a statistically homogeneous and isotropic state as the mean velocity profile becomes uniform. In the nearly homogeneous and isotropic region, the ratio of root-mean-squared velocity fluctuations in the streamwise and vertical directions is about 1.08, the longitudinal integral scales are also similar in these directions, and the large-scale intermittency becomes insignificant. The turbulent kinetic energy per unit mass decays according to a power law with an exponent of about 2, larger than those reported for incompressible grid turbulence. The energy spectra in the inertial subrange agree well with other turbulent flows when normalized by the turbulent kinetic energy dissipation rate and kinematic viscosity. The non-dimensional dissipation rate C epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_\varepsilon$$\end{document} is within a range of 0.56-0.87, which is also consistent with incompressible grid turbulence. The dependence of C epsilon\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_\varepsilon$$\end{document} on the turbulent Reynolds number aligns with the scaling of non-equilibrium turbulence, leading to the large decay exponent.
引用
收藏
页数:21
相关论文
共 90 条
  • [1] Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields
    Agui, JH
    Briassulis, G
    Andreopoulos, Y
    [J]. JOURNAL OF FLUID MECHANICS, 2005, 524 : 143 - 195
  • [2] Freely decaying turbulence in a finite domain at finite Reynolds number
    Anas, Mohammad
    Joshi, Pranav
    Verma, Mahendra K.
    [J]. PHYSICS OF FLUIDS, 2020, 32 (09)
  • [3] Anderson JD., 1990, Modern compressible flow: with historical perspective
  • [4] Obtaining accurate mean velocity measurements in high Reynolds number turbulent boundary layers using Pitot tubes
    Bailey, S. C. C.
    Hultmark, M.
    Monty, J. P.
    Alfredsson, P. H.
    Chong, M. S.
    Duncan, R. D.
    Fransson, J. H. M.
    Hutchins, N.
    Marusic, I.
    McKeon, B. J.
    Nagib, H. M.
    Orlu, R.
    Segalini, A.
    Smits, A. J.
    Vinuesa, R.
    [J]. JOURNAL OF FLUID MECHANICS, 2013, 715 : 642 - 670
  • [5] Batchelor G K, 1953, The theory of homogeneous turbulence, DOI DOI 10.1016/j.cej.2015.07.022
  • [6] Homogeneity and isotropy in a laboratory turbulent flow
    Bellani, Gabriele
    Variano, Evan A.
    [J]. EXPERIMENTS IN FLUIDS, 2014, 55 (01)
  • [7] On integral length scales in anisotropic turbulence
    Bewley, Gregory P.
    Chang, Kelken
    Bodenschatz, Eberhard
    [J]. PHYSICS OF FLUIDS, 2012, 24 (06)
  • [8] COMPRESSIBILITY EFFECTS IN TURBULENT SHEAR LAYERS
    BOGDANOFF, DW
    [J]. AIAA JOURNAL, 1983, 21 (06) : 926 - 927
  • [9] Dissipation in unsteady turbulence
    Bos, Wouter J. T.
    Rubinstein, Robert
    [J]. PHYSICAL REVIEW FLUIDS, 2017, 2 (02):
  • [10] Reynolds number effect on the velocity increment skewness in isotropic turbulence
    Bos, Wouter J. T.
    Chevillard, Laurent
    Scott, Julian F.
    Rubinstein, Robert
    [J]. PHYSICS OF FLUIDS, 2012, 24 (01)