Forest Aboveground Biomass and Forest Height Estimation Over a Sub-tropical Forest Using Machine Learning Algorithm and Synthetic Aperture Radar Data

被引:8
作者
Ali, Noman [1 ]
Khati, Unmesh [2 ]
机构
[1] Panjab Univ, UIET Hoshiarpur, Chandigarh 160014, Punjab, India
[2] Indian Inst Technol Indore, DAASE, Indore 453552, Madhya Pradesh, India
关键词
L-Band ALOS-2/PALSAR-2 SAR data; Aboveground biomass model; Height of forest model; AGB and height of forest model; BAND SAR BACKSCATTER; POLINSAR; CARBON; PARAMETER; COVER;
D O I
10.1007/s12524-024-01821-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Forest aboveground biomass (AGB) is a key measurement in studying terrestrial carbon storage, carbon cycle, and climate change. Machine learning based algorithms can be applied to estimate forest AGB using remote sensing-based data. Our study utilized L-band ALOS-2/PALSAR-2 Synthetic Aperture Radar (SAR) data in combination with multi-parameter linear regression (LR) and Random forest regression (RF) for forest carbon estimation. Six L-band fully polarimetric acquisitions are used in this study. The input parameters to the RF algorithm are the backscatter, decomposition powers and species information. The multi-temporal backscatter (HH1 to HH6, HV1 to HV6, VV1 to VV6) and the temporal average are used. Furthermore, average decomposi-tion parameters from G4U decomposition-Double bounce (Dbl), Odd bounce (Odd), Volume scattering (Vol), and Helix scattering (Hlx) for all six dates. In the first case (1), the model is trained to estimate only the AGB. In the second case (2), the model is trained for forest height estimation. In the third case (3), the model is trained to predict both the AGB and height of the forest. In contrast to the LR method, there is a significant improvement in AGB estimation achieved with the RF algorithms. This study shows the potential of combined retrieval of AGB and forest height using time-series L-band backscatter data.
引用
收藏
页码:771 / 786
页数:16
相关论文
共 39 条
[1]  
Achard Frederic., 2012, Global forest monitoring from earth observation
[2]   Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random forest regression [J].
Adam, Elhadi ;
Mutanga, Onisimo ;
Abdel-Rahman, Elfatih M. ;
Ismail, Riyad .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (02) :693-714
[3]   Above-ground biomass and carbon estimates of Shorea robusta and Tectona grandis forests using QuadPOL ALOS PALSAR data [J].
Behera, M. D. ;
Tripathi, P. ;
Mishra, B. ;
Kumar, Shashi ;
Chitale, V. S. ;
Behera, Soumit K. .
ADVANCES IN SPACE RESEARCH, 2016, 57 (02) :552-561
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   Measuring carbon in forests: current status and future challenges [J].
Brown, S .
ENVIRONMENTAL POLLUTION, 2002, 116 (03) :363-372
[6]   Benchmarking the Retrieval of Biomass in Boreal Forests Using P-Band SAR Backscatter with Multi-Temporal C- and L-Band Observations [J].
Cartus, Oliver ;
Santoro, Maurizio ;
Wegmuller, Urs ;
Rommen, Bjorn .
REMOTE SENSING, 2019, 11 (14)
[7]   Tree height integrated into pantropical forest biomass estimates [J].
Feldpausch, T. R. ;
Lloyd, J. ;
Lewis, S. L. ;
Brienen, R. J. W. ;
Gloor, M. ;
Monteagudo Mendoza, A. ;
Lopez-Gonzalez, G. ;
Banin, L. ;
Abu Salim, K. ;
Affum-Baffoe, K. ;
Alexiades, M. ;
Almeida, S. ;
Amaral, I. ;
Andrade, A. ;
Aragao, L. E. O. C. ;
Araujo Murakami, A. ;
Arets, E. J. M. M. ;
Arroyo, L. ;
Aymard, G. A. ;
Baker, T. R. ;
Banki, O. S. ;
Berry, N. J. ;
Cardozo, N. ;
Chave, J. ;
Comiskey, J. A. ;
Alvarez, E. ;
de Oliveira, A. ;
Di Fiore, A. ;
Djagbletey, G. ;
Domingues, T. F. ;
Erwin, T. L. ;
Fearnside, P. M. ;
Franca, M. B. ;
Freitas, M. A. ;
Higuchi, N. ;
Honorio, E. ;
Iida, Y. ;
Jimenez, E. ;
Kassim, A. R. ;
Killeen, T. J. ;
Laurance, W. F. ;
Lovett, J. C. ;
Malhi, Y. ;
Marimon, B. S. ;
Marimon-Junior, B. H. ;
Lenza, E. ;
Marshall, A. R. ;
Mendoza, C. ;
Metcalfe, D. J. ;
Mitchard, E. T. A. .
BIOGEOSCIENCES, 2012, 9 (08) :3381-3403
[8]   Height-diameter allometry of tropical forest trees [J].
Feldpausch, T. R. ;
Banin, L. ;
Phillips, O. L. ;
Baker, T. R. ;
Lewis, S. L. ;
Quesada, C. A. ;
Affum-Baffoe, K. ;
Arets, E. J. M. M. ;
Berry, N. J. ;
Bird, M. ;
Brondizio, E. S. ;
de Camargo, P. ;
Chave, J. ;
Djagbletey, G. ;
Domingues, T. F. ;
Drescher, M. ;
Fearnside, P. M. ;
Franca, M. B. ;
Fyllas, N. M. ;
Lopez-Gonzalez, G. ;
Hladik, A. ;
Higuchi, N. ;
Hunter, M. O. ;
Iida, Y. ;
Salim, K. A. ;
Kassim, A. R. ;
Keller, M. ;
Kemp, J. ;
King, D. A. ;
Lovett, J. C. ;
Marimon, B. S. ;
Marimon-Junior, B. H. ;
Lenza, E. ;
Marshall, A. R. ;
Metcalfe, D. J. ;
Mitchard, E. T. A. ;
Moran, E. F. ;
Nelson, B. W. ;
Nilus, R. ;
Nogueira, E. M. ;
Palace, M. ;
Patino, S. ;
Peh, K. S. -H. ;
Raventos, M. T. ;
Reitsma, J. M. ;
Saiz, G. ;
Schrodt, F. ;
Sonke, B. ;
Taedoumg, H. E. ;
Tan, S. .
BIOGEOSCIENCES, 2011, 8 (05) :1081-1106
[9]   Land cover type and biomass classification using AirSAR data for evaluation of monitoring scenarios in the Colombian Amazon [J].
Hoekman, DH ;
Quiñones, MJ .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (02) :685-696
[10]   Importance of biomass in the global carbon cycle [J].
Houghton, R. A. ;
Hall, Forrest ;
Goetz, Scott J. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2009, 114