Prediction of readmissions in hospitalized children and adolescents by machine learning

被引:0
作者
da Silva, Nayara Cristina [1 ]
Albertini, Marcelo Keese [2 ]
Backes, Andre Ricardo [3 ]
Pena, Georgia das Gracas [1 ]
机构
[1] Univ Fed Uberlandia, Grad Program Hlth Sci, Uberlandia, MG, Brazil
[2] Univ Fed Uberlandia, Sch Comp Sci, Uberlandia, MG, Brazil
[3] Univ Fed Sao Carlos, Dept Comp, Sao Carlos, SP, Brazil
来源
38TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2023 | 2023年
关键词
Machine learning; data analysis; hospital readmission; children health; adolescents health;
D O I
10.1145/3555776.3577592
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Pediatric hospital readmission involves greater burdens for the patient and their family network, and for the health system. Machine learning can be a good strategy to expand knowledge in this area and to assist in the identification of patients at readmission risk. The objective of the study was to develop a predictive model to identify children and adolescents at high risk of potentially avoidable 30-day readmission using a machine learning approach. Retrospective cohort study with patients under 18 years old admitted to a tertiary university hospital. We collected demographic, clinical, and nutritional data from electronic databases. We apply machine learning techniques to build the predictive models. The 30-day hospital readmissions rate was 9.50%. The accuracy for CART model with bagging was 0.79, the sensitivity, and specificity were 76.30% and 64.40%, respectively. Machine learning approaches can predict avoidable 30-day pediatric hospital readmission into tertiary assistance.
引用
收藏
页码:1088 / 1091
页数:4
相关论文
empty
未找到相关数据