Hierarchical nanofibrous and recyclable membrane with unidirectional water-transport effect for efficient solar-driven interfacial evaporation

被引:5
|
作者
Ou, Kangkang [1 ,2 ]
Li, Jingbo [2 ]
Hou, Yijun [2 ]
Qi, Kun [2 ]
Dai, Yunling [2 ]
Wang, Mengting [2 ]
Wang, Baoxiu [3 ]
机构
[1] Shanghai Univ Engn Sci, Sch Text & Fash, Shanghai 201620, Peoples R China
[2] Zhongyuan Univ Technol, Res Inst Text & Clothing Ind, Zhengzhou 450007, Peoples R China
[3] Shanghai Univ Engn Sci, Sch Chem & Chem Engn, Shanghai 201620, Peoples R China
关键词
Unidirectional water transport; Photothermal conversion; Interfacial evaporation; Electrospinning; GENERATION;
D O I
10.1016/j.jcis.2023.11.125
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solar-driven interfacial evaporation technology has attracted significant attention for water purification. However, design and fabrication of solar-driven evaporator with cost-effective, excellent capability and large-scale production remains challenging. In this study, inspired by plant transpiration, a tri-layered hierarchical nanofibrous photothermal membrane (HNPM) with a unidirectional water transport effect was designed and prepared via electrospinning for efficient solar-driven interfacial evaporation. The synergistic effect of the hierarchical hydrophilic-hydrophobic structure and the self-pumping effect endowed the HNPM with unidirectional water transport properties. The HNPM could unidirectionally drive water from the hydrophobic layer to the hydrophilic layer within 2.5 s and prevent reverse water penetration. With this unique property, the HNPM was coupled with a water supply component and thermal insulator to assemble a self-floating evaporator for water desalination. Under 1 sun illumination, the water evaporation rates of the designed evaporator with HNPM in pure water and dyed wastewater reached 1.44 and 1.78 kg center dot m(2)center dot h(-1), respectively. The evaporator could achieve evaporation of 11.04 kg center dot m(-2) in 10 h under outdoor solar conditions. Moreover, the tri-layered HNPM exhibited outstanding flexibility and recyclability. Our bionic hydrophobic-to-hydrophilic structure endowed the solar-driven evaporator with capillary wicking and transpiration effects, which provides a rational design and optimization for efficient solar-driven applications.
引用
收藏
页码:474 / 484
页数:11
相关论文
共 50 条
  • [21] Recent Progress on Emerging Porous Materials for Solar-Driven Interfacial Water Evaporation
    Ma, Chuang
    Wang, Weike
    Jia, Zhen
    Zhang, Jing
    Wang, Chengbing
    ENERGY TECHNOLOGY, 2023, 11 (08)
  • [22] Solar-driven interfacial evaporation for water treatment: advanced research progress and challenges
    Li, Jiyan
    Jing, Yanju
    Xing, Guoyu
    Liu, Meichen
    Cui, Yang
    Sun, Hanxue
    Zhu, Zhaoqi
    Liang, Weidong
    Li, An
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (36) : 18470 - 18489
  • [23] Solar-driven interfacial water evaporation for wastewater purification: Recent advances and challenges
    Cui, Lingfang
    Wang, Peifang
    Che, Huinan
    Chen, Juan
    Liu, Bin
    Ao, Yanhui
    CHEMICAL ENGINEERING JOURNAL, 2023, 477
  • [24] Coupling solar-driven interfacial evaporation with forward osmosis for continuous water treatment
    Song, Xiangju
    Dong, Weichao
    Zhang, Yajing
    Abdel-Ghafar, Hamdy Maamoun
    Toghan, Arafat
    Jiang, Heqing
    EXPLORATION, 2022, 2 (04):
  • [25] Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications
    Zhu, Liangliang
    Gao, Minmin
    Peh, Connor Kang Nuo
    Ho, Ghim Wei
    NANO ENERGY, 2019, 57 : 507 - 518
  • [26] Photocatalysis assisted solar-driven interfacial water evaporation: principles, advances and trends
    Wang, Dongxue
    Zhang, Xiaotong
    Yang, Chunyu
    Qu, Fengyu
    Huang, Jian
    He, Jingbo
    Yang, Zhuoran
    Guo, Wei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 360
  • [27] Nanofibrous hydrogel-reduced graphene oxide membranes for effective solar-driven interfacial evaporation and desalination
    Zang, Linlin
    Sun, Liguo
    Zhang, Shaochun
    Finnerty, Casey
    Kim, Albert
    Ma, Jun
    Mi, Baoxia
    CHEMICAL ENGINEERING JOURNAL, 2021, 422
  • [28] In-situ polymerization of PANI nanocone array on PEN nanofibrous membranes for solar-driven interfacial evaporation
    Liu, Xidi
    Li, Lingsha
    Wang, Mengxue
    Wang, Daiyi
    Yan, Haipeng
    Li, Kui
    Li, Ying
    Yang, Yuxin
    You, Yong
    Yang, Xulin
    Wang, Pan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 344
  • [29] Boosting Efficient Ammonium Rejection and Water Evaporation Rate by Solar-Driven Hydrogel Evaporation
    Wang, Yitong
    Mu, Xiaojiang
    Zhou, Jianhua
    Song, Lingjun
    Li, Xiangyang
    He, Fengmei
    Wang, Xiaoyang
    Miao, Lei
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2024, 5 (08):
  • [30] Hierarchical Pore-Gradient Silica Aerogel Balancing Heat and Water Management for Efficient Solar-Driven Water Evaporation
    Zhang, Xuan
    Chang, Qing
    Li, Ning
    Xue, Chaorui
    Zhang, Huinian
    Yang, Jinlong
    Hu, Shengliang
    ADVANCED SUSTAINABLE SYSTEMS, 2022, 6 (06)