Configured quantum reservoir computing for multi-task machine learning

被引:11
作者
Xia, Wei [1 ,2 ]
Zou, Jie [1 ,2 ]
Qiu, Xingze [1 ,2 ,3 ]
Chen, Feng [4 ]
Zhu, Bing [5 ]
Li, Chunhe [4 ,6 ,7 ]
Deng, Dong-Ling [8 ,9 ]
Li, Xiaopeng [1 ,2 ,9 ,10 ]
机构
[1] Fudan Univ, State Key Lab Surface Phys, Key Lab Micro & Nano Photon Struct MOE, Shanghai 200433, Peoples R China
[2] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[3] Tongji Univ, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China
[4] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai 200433, Peoples R China
[5] Hong Kong & Shang Hai Banking Corp Holdings PLC, Hong Kong & Shang Hai Banking Corp Lab, Guangzhou 511458, Peoples R China
[6] Fudan Univ, Shanghai Ctr Math Sci, Sch Math Sci, Shanghai 200433, Peoples R China
[7] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[8] Tsinghua Univ, Ctr Quantum Informat, IIIS, Beijing 100084, Peoples R China
[9] Shanghai Qi Zhi Inst, AI Tower, Shanghai 200232, Peoples R China
[10] Shanghai Res Ctr Quantum Sci, Shanghai 201315, Peoples R China
基金
中国国家自然科学基金;
关键词
Configured quantum reservoir computing; Multi -task learning; Quantum advantage; Quantum coherence; CHAOTIC SYSTEMS; OPTIMIZATION; CIRCUITS; NETWORK; ROBUST;
D O I
10.1016/j.scib.2023.08.040
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Amidst the rapid advancements in experimental technology, noise-intermediate-scale quantum (NISQ) devices have become increasingly programmable, offering versatile opportunities to leverage quantum computational advantage. Here we explore the intricate dynamics of programmable NISQ devices for quantum reservoir computing. Using a genetic algorithm to configure the quantum reservoir dynamics, we systematically enhance the learning performance. Remarkably, a single configured quantum reservoir can simultaneously learn multiple tasks, including a synthetic oscillatory network of transcriptional reg-ulators, chaotic motifs in gene regulatory networks, and the fractional-order Chua's circuit. Our config-ured quantum reservoir computing yields highly precise predictions for these learning tasks, outperforming classical reservoir computing. We also test the configured quantum reservoir computing in foreign exchange (FX) market applications and demonstrate its capability to capture the stochastic evolution of the exchange rates with significantly greater accuracy than classical reservoir computing approaches. Through comparison with classical reservoir computing, we highlight the unique role of quantum coherence in the quantum reservoir, which underpins its exceptional learning performance. Our findings suggest the exciting potential of configured quantum reservoir computing for exploiting the quantum computation power of NISQ devices in developing artificial general intelligence.(c) 2023 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
引用
收藏
页码:2321 / 2329
页数:9
相关论文
共 56 条
[1]   Adiabatic quantum computation [J].
Albash, Tameem ;
Lidar, Daniel A. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[2]  
An NM, 2016, Arxiv, DOI arXiv:1611.04542
[3]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[4]   Quantifying Coherence [J].
Baumgratz, T. ;
Cramer, M. ;
Plenio, M. B. .
PHYSICAL REVIEW LETTERS, 2014, 113 (14)
[5]   Real-time computation at the edge of chaos in recurrent neural networks [J].
Bertschinger, N ;
Natschläger, T .
NEURAL COMPUTATION, 2004, 16 (07) :1413-1436
[6]   Quantum Reservoir Computing Using Arrays of Rydberg Atoms [J].
Bravo, Rodrigo Araiza ;
Najafi, Khadijeh ;
Gao, Xun ;
Yelin, Susanne F. .
PRX QUANTUM, 2022, 3 (03)
[7]   Fractional-order Chua's circuit: Time-domain analysis, bifurcation, chaotic behavior and test for chaos [J].
Cafagna, Donato ;
Grassi, Giuseppe .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (03) :615-639
[8]   Inferring structural and dynamical properties of gene networks from data with deep learning [J].
Chen, Feng ;
Li, Chunhe .
NAR GENOMICS AND BIOINFORMATICS, 2022, 4 (03)
[9]   Temporal Information Processing on Noisy Quantum Computers [J].
Chen, Jiayin ;
Nurdin, Hendra I. ;
Yamamoto, Naoki .
PHYSICAL REVIEW APPLIED, 2020, 14 (02)
[10]   Characterizing the memory capacity of transmon qubit reservoirs [J].
Dasgupta, Samudra ;
Hamilton, Kathleen E. ;
Banerjee, Arnab .
2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, :162-166