Neighbourhood complexity of graphs of bounded twin-width

被引:3
|
作者
Bonnet, Edouard [1 ]
Foucaud, Florent [2 ,3 ]
Lehtila, Tuomo [4 ,5 ]
Parreau, Aline [6 ]
机构
[1] Univ Claude Bernard Lyon 1, Univ Lyon, LIP UMR5668, ENS Lyon,CNRS, Lyon, France
[2] Univ Clermont Auvergne, LIMOS, Mines St Etienne, CNRS,Clermont Auvergne INP, F-63000 Clermont Ferrand, France
[3] Univ Orleans, INSA Ctr Val de Loire, LIFO EA 4022, F-45067 Orleans 2, France
[4] Univ Lyon, UCBL, CNRS, LIRIS UMR 5205, F-69622 Lyon, France
[5] Univ Turku, Dept Math & Stat, Turku, Finland
[6] Univ Lyon, Univ Lyon 2, CNRS, INSA Lyon,UCBL,Cent Lyon,LIRIS,UMR5205, F-69622 Villeurbanne, France
基金
芬兰科学院;
关键词
D O I
10.1016/j.ejc.2023.103772
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give essentially tight bounds for, nu(d, k), the maximum number of distinct neighbourhoods on a set X of k vertices in a graph with twin-width at most d. Using the celebrated Marcus- Tardos theorem, two independent works (Bonnet et al., 2022; Przybyszewski, 2022) have shown the upper bound nu(d, k) <= exp(exp(O(d)))k, with a double-exponential dependence in the twin-width. The work of Gajarsky et al. (2022), using the frame-work of local types, implies the existence of a single-exponential bound (without explicitly stating such a bound). We give such an explicit bound, and prove that it is essentially tight. Indeed, we give a short self-contained proof that for every d and k nu(d, k) <= (d + 2)2(d+1)k = 2(d+logd+Theta(1))k,and build a bipartite graph implying nu(d, k) >= 2(d+logd+Theta(1)k), in the regime when k is large enough compared to d.(c) 2023 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Twin-width VI: the lens of contraction sequences
    Bonnet, Edouard
    Kim, Fun Jung
    Reinald, Amadeus
    Thomasse, Stephan
    PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 1036 - 1056
  • [22] Computing Twin-width with SAT and Branch & Bound
    Schidler, Andre
    Szeider, Stefan
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 2013 - 2021
  • [23] A Contraction Tree SAT Encoding for Computing Twin-Width
    Horev, Yinon
    Shay, Shiraz
    Cohen, Sarel
    Friedrich, Tobias
    Issac, Davis
    Kamma, Lior
    Niklanovits, Aikaterini
    Simonov, Kirill
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT II, PAKDD 2024, 2024, 14646 : 444 - 456
  • [24] Computing Twin-Width Parameterized by the Feedback Edge Number
    Balaban, Jakub
    Ganian, Robert
    Rocton, Mathis
    41ST INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, STACS 2024, 2024, 289
  • [25] Twin-width I: tractable FO model checking
    Bonnet, Edouard
    Kim, Eun Jung
    Thomasse, Stephan
    Watrigant, Remi
    2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 601 - 612
  • [26] Computing Twin-Width Parameterized by the Feedback Edge Number
    Balabán, Jakub
    Ganian, Robert
    Rocton, Mathis
    Leibniz International Proceedings in Informatics, LIPIcs, 289
  • [27] Twin-Width VIII: Delineation and Win-Wins
    Bonnet, Édouard
    Chakraborty, Dibyayan
    Kim, Eun Jung
    Köhler, Noleen
    Lopes, Raul
    Thomassé, Stéphan
    Leibniz International Proceedings in Informatics, LIPIcs, 2022, 249
  • [28] Twin-width I: Tractable FO Model Checking
    Bonnet, Edouard
    Kim, Eun Jung
    Thomasse, Stephan
    Watrigant, Remi
    JOURNAL OF THE ACM, 2022, 69 (01)
  • [29] On the complexity of the multicut problem in bounded tree-width graphs and digraphs
    Bentz, Cedric
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (10) : 1908 - 1917
  • [30] POLYSYNTHETIC FELDSPAR TWIN-WIDTH DISTRIBUTIONS - MODELS FOR INVERSION TWINNING
    GRAY, NH
    ANDERSON, JB
    JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR MATHEMATICAL GEOLOGY, 1980, 12 (03): : 267 - 277