Random scan optimization of a laser-plasma electron injector based on fast particle-in-cell simulations

被引:1
|
作者
Drobniak, P. [1 ]
Baynard, E. [1 ]
Bruni, C. [1 ]
Cassou, K. [1 ]
Guyot, C. [1 ]
Kane, G. [1 ]
Kazamias, S. [1 ]
Kubytskyi, V. [1 ]
Lericheux, N. [1 ]
Lucas, B. [1 ]
Pittman, M. [1 ]
Massimo, F. [2 ]
Beck, A. [3 ]
Specka, A. [3 ]
Nghiem, P. [4 ]
Minenna, D. [4 ]
机构
[1] Univ Paris Saclay, Lab Phys Infinis Irene Joliot Curie IJCLab 2, CNRS, IN2P3,UMR 9012, F-91405 Orsay, France
[2] Univ Paris Saclay, Lab Phys Gaz & Plasmas, CNRS, LPGP,UMR 8578, F-91405 Orsay, France
[3] Ecole Polytech, Lab Leprince Ringuet LLR, CNRS, UMR 7638, F-91128 Palaiseau, France
[4] Univ Paris Saclay, Ctr Saclay, CEA Irfu, F-91191 Gif Sur Yvette, France
关键词
D O I
10.1103/PhysRevAccelBeams.26.091302
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The optimization and advanced study of a laser-plasma electron injector are presented based on a truncated ionization injection scheme for high quality beam production. The SMILEI code is used with laser envelope approximation and a low number of particles per cell to reach computation time performances enabling the production of a large number of accelerator configurations. The developed and tested workflow is a possible approach for the production of a large dataset for laser-plasma accelerator optimization. A selection of functions of merit used to grade generated electron beams is discussed. Among the significant number of configurations, two specific working points are presented in detail. All data generated are left open to the scientific community for further study and optimization.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A Deep Learning-Based Particle-in-Cell Method for Plasma Simulations
    Aguilar, Xavier
    Markidis, Stefano
    2021 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER 2021), 2021, : 692 - 697
  • [42] Discrete particle noise in particle-in-cell simulations of plasma microturbulence
    Nevins, WM
    Hammett, GW
    Dimits, AM
    Dorland, W
    Shumaker, DE
    PHYSICS OF PLASMAS, 2005, 12 (12) : 1 - 16
  • [43] Particle-in-cell simulations of optical injectors for plasma accelerators
    Gordon, DF
    Ting, A
    Jones, T
    Hafizi, B
    Hubbard, RF
    Sprangle, P
    PROCEEDINGS OF THE 2003 PARTICLE ACCELERATOR CONFERENCE, VOLS 1-5, 2003, : 1846 - 1848
  • [44] Particle-in-cell simulations of electron spin effects in plasmas
    Brodin, Gert
    Holkundkar, Amol
    Marklund, Mattias
    JOURNAL OF PLASMA PHYSICS, 2013, 79 : 377 - 382
  • [45] Resonant electron firehose instability: Particle-in-cell simulations
    Gary, SP
    Nishimura, K
    PHYSICS OF PLASMAS, 2003, 10 (09) : 3571 - 3576
  • [46] Particle-in-cell simulations of electron transport from plasma turbulence: recent progress in gyrokinetic particle simulations of turbulent plasmas
    Lin, Z
    Rewoldt, G
    Ethier, S
    Hahm, TS
    Lee, WW
    Lewandowski, JLV
    Nishimura, Y
    Wang, WX
    SciDAC 2005: Scientific Discovery Through Advanced Computing, 2005, 16 : 16 - 24
  • [47] Particle-in-Cell Simulations of Plasma Dynamics in Cometary Environment
    Sishtla, Chaitanya Prasad
    Olshevsky, Vyacheslav
    Chien, Steven W. D.
    Markidis, Stefano
    Laure, Erwin
    13TH INTERNATIONAL CONFERENCE ON NUMERICAL MODELING OF SPACE PLASMA FLOWS (ASTRONUM-2018), 2019, 1225
  • [48] Particle-in-cell and Weak Turbulence Simulations of Plasma Emission
    Lee, Sang-Yun
    Ziebell, L. F.
    Yoon, P. H.
    Gaelzer, R.
    Lee, E. S.
    ASTROPHYSICAL JOURNAL, 2019, 871 (01)
  • [49] OPTIMISATION OF PARTICLE-IN-CELL SIMULATIONS FOR LASER WAKEFIELD ACCELERATION
    Iovanescu, Rares
    Daia, Radu P.
    Slusanschi, Emil I.
    Ticos, Catalin M.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2023, 85 (01): : 159 - 166
  • [50] OPTIMISATION OF PARTICLE-IN-CELL SIMULATIONS FOR LASER WAKEFIELD ACCELERATION
    Iovănescu, Rareș
    Daia, Radu P.
    Slușanschi, Emil I.
    Ticoș, Cătălin M.
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2023, 85 (01): : 159 - 166