A novel design method for the micro-thrust measurement system

被引:6
作者
Cui, Haichao [1 ]
Li, Xiaolan [2 ]
机构
[1] Space Engn Univ, Dept Aerosp Sci & Technol, State Key Lab Laser Prop & Applicat, Beijing 101416, Peoples R China
[2] Space Engn Univ, Sch Space Command, Beijing 101416, Peoples R China
关键词
Micro-thrust; Measurement System; Design Method; Natural Frequency Maximization; Calibration; INTERFEROMETRIC BALANCE; IMPULSE MEASUREMENT; STAND; SPACE;
D O I
10.1016/j.measurement.2023.113543
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A novel method is developed to determine the key parameters of a micro-thrust measurement system. Firstly, the measurement range, resolution and error of the system to be designed are regarded as the design objectives. Then, the performance parameters of the displacement sensor and the basic properties of the oscillating arm are defined as the initial design conditions. Further, according to the principle of the micro-thrust measurement, the relationships between the main design variables and the initial conditions and the design objectives are established. A criterion of maximizing the system frequency is proposed based on the invariance of generalized stiffness coefficient, and then each design variable is determined based on the above criterion Finally, a sub-micronewton thrust stand is developed using the proposed method, whose system parameters are obtained by the calibration method. The results show that the system parameters meet the design requirements, and the thrust noises corresponding to the underdamped and overdamped conditions are better than 1 mu N/root Hz in 0.35 mHz similar to 1 Hz band and 0.1 mu N/root Hzv in 9 mHz similar to 1 Hz band, respectively.
引用
收藏
页数:17
相关论文
共 58 条
  • [1] Experimental results from the ST7 mission on LISA Pathfinder
    Anderson, G.
    Anderson, J.
    Anderson, M.
    Aveni, G.
    Bame, D.
    Barela, P.
    Blackman, K.
    Carmain, A.
    Chen, L.
    Cherng, M.
    Clark, S.
    Connally, M.
    Connolly, W.
    Conroy, D.
    Cooper, M.
    Cutler, C.
    D'Agostino, J.
    Demmons, N.
    Dorantes, E.
    Dunn, C.
    Duran, M.
    Ehrbar, E.
    Evans, J.
    Fernandez, J.
    Franklin, G.
    Girard, M.
    Gorelik, J.
    Hruby, V
    Hsu, O.
    Jackson, D.
    Javidnia, S.
    Kern, D.
    Knopp, M.
    Kolasinski, R.
    Kuo, C.
    Le, T.
    Li, I
    Liepack, O.
    Littlefield, A.
    Maghami, P.
    Malik, S.
    Markley, L.
    Martin, R.
    Marrese-Reading, C.
    Mehta, J.
    Mennela, J.
    Miller, D.
    Nguyen, D.
    O'Donnell, J.
    Parikh, R.
    [J]. PHYSICAL REVIEW D, 2018, 98 (10)
  • [2] Thrust measurement at micronewton level
    Bertinetto, F
    Bisi, M
    Cordiale, P
    Canuto, E
    Rolino, A
    Cesare, S
    [J]. 2002 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS, CONFERENCE DIGEST, 2002, : 518 - 519
  • [3] Boccaletto L., 2000, 36 AIAA ASME SAE ASE, P3268, DOI [10.2514/6.2000-3268, DOI 10.2514/6.2000-3268]
  • [4] Thrust Measurement of the Hybrid Electric Thruster TIHTUS by a Baffle Plate
    Boehrk, Hannah
    Auweter-Kurtz, Monika
    [J]. JOURNAL OF PROPULSION AND POWER, 2009, 25 (03) : 729 - 736
  • [5] Nanobalance: An automated interferometric balance for micro-thrust measurement
    Canuto, E
    Rolino, A
    [J]. ISA TRANSACTIONS, 2004, 43 (02) : 169 - 187
  • [6] Canuto E, 2003, P AMER CONTR CONF, P1110
  • [7] A 10 nN resolution thrust-stand for micro-propulsion devices
    Chakraborty, Subha
    Courtney, Daniel G.
    Shea, Herbert
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (11)
  • [8] Large Constellations of Small Satellites: A Survey of Near Future Challenges and Missions
    Curzi, Giacomo
    Modenini, Dario
    Tortora, Paolo
    [J]. AEROSPACE, 2020, 7 (09)
  • [9] Investigation of time-dependent forces on a nano-Newton-second impulse balance
    D'Souza, BC
    Ketsdever, AD
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (01)
  • [10] Edamitsu T., 2005, 29 INT EL PROP C PRI