EDC-DTI: An end-to-end deep collaborative learning model based on multiple information for drug-target interactions prediction

被引:6
|
作者
Yuan, Yongna [1 ,5 ]
Zhang, Yuhao [1 ]
Meng, Xiangbo [1 ]
Liu, Zhenyu [3 ]
Wang, Bohan [1 ]
Miao, Ruidong [2 ]
Zhang, Ruisheng [1 ]
Su, Wei
Liu, Lei [4 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, South Tianshui Rd, Lanzhou 730000, Gansu, Peoples R China
[2] Lanzhou Univ, Sch Life Sci, South Tianshui Rd, Lanzhou 730000, Gansu, Peoples R China
[3] Gansu Univ Polit Sci & Law, Sch Cyberspace Secur, Anning West Rd, Lanzhou 730070, Gansu, Peoples R China
[4] Duzhe Publishing Grp Co Ltd, DuZhe Rd, Lanzhou 730000, Gansu, Peoples R China
[5] Lanzhou Univ, Lanzhou 730000, Gansu, Peoples R China
关键词
DTIs prediction; Deep learning; Graph attention network; Heterogeneous network; IDENTIFICATION; SIMVASTATIN; SIMILARITY; NETWORKS; EFFICACY; ABCB1; GENE;
D O I
10.1016/j.jmgm.2023.108498
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Innovations in drug-target interactions (DTIs) prediction accelerate the progression of drug development. The introduction of deep learning models has a dramatic impact on DTIs prediction, with a distinct influence on saving time and money in drug discovery. This study develops an end-to-end deep collaborative learning model for DTIs prediction, called EDC-DTI, to identify new targets for existing drugs based on multiple drug -target-related information including homogeneous information and heterogeneous information by the way of deep learning. Our end-to-end model is composed of a feature builder and a classifier. Feature builder consists of two collaborative feature construction algorithms that extract the molecular properties and the topology property of networks, and the classifier consists of a feature encoder and a feature decoder which are designed for feature integration and DTIs prediction, respectively. The feature encoder, mainly based on the improved graph attention network, incorporates heterogeneous information into drug features and target features separately. The feature decoder is composed of multiple neural networks for predictions. Compared with six popular baseline models, EDC-DTI achieves highest predictive performance in the case of low computational costs. Robustness tests demonstrate that EDC-DTI is able to maintain strong predictive performance on sparse datasets. As well, we use the model to predict the most likely targets to interact with Simvastatin (DB00641), Nifedipine (DB01115) and Afatinib (DB08916) as examples. Results show that most of the predictions can be confirmed by literature with clear evidence.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] An End-to-End Deep Learning Model for EEG-Based Major Depressive Disorder Classification
    Xia, Min
    Zhang, Yangsong
    Wu, Yihan
    Wang, Xiuzhu
    IEEE ACCESS, 2023, 11 : 41337 - 41347
  • [42] End-to-End Insulator String Defect Detection in a Complex Background Based on a Deep Learning Model
    Xu, Weifeng
    Zhong, Xiaohong
    Luo, Man
    Weng, Liguo
    Zhou, Guohua
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [43] End-To-End Deep-Learning-Based Tamil Handwritten Document Recognition and Classification Model
    Vinotheni, C.
    Pandian, S. Lakshmana
    IEEE ACCESS, 2023, 11 : 43195 - 43204
  • [44] Deep learning-based transcriptome data classification for drug-target interaction prediction
    Lingwei Xie
    Song He
    Xinyu Song
    Xiaochen Bo
    Zhongnan Zhang
    BMC Genomics, 19
  • [45] End-to-End Deep Learning-Based Human Activity Recognition Using Channel State Information
    Hsieh, Chaur-Heh
    Chen, Jen-Yang
    Kuo, Chung-Ming
    Wang, Ping
    JOURNAL OF INTERNET TECHNOLOGY, 2021, 22 (02): : 271 - 281
  • [46] Prediction of Drug-Target Interactions With High- Quality Negative Samples and a Network-Based Deep Learning Framework
    Cheng, Zhixing
    Xu, Deling
    Ding, Dewu
    Ding, Yanrui
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (03) : 1567 - 1578
  • [47] Drug-target interaction prediction using semi-bipartite graph model and deep learning
    Hafez Eslami Manoochehri
    Mehrdad Nourani
    BMC Bioinformatics, 21
  • [48] Graph-DTI: A New Model for Drug-target Interaction Prediction Based on Heterogenous Network Graph Embedding
    Qu, Xiaohan
    Du, Guoxia
    Hu, Jing
    Cai, Yongming
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2024, 20 (06) : 1013 - 1024
  • [49] ncRFP: A Novel end-to-end Method for Non-Coding RNAs Family Prediction Based on Deep Learning
    Wang, Linyu
    Zheng, Shaoge
    Zhang, Hao
    Qiu, Zhiyang
    Zhong, Xiaodan
    Liuliu, Haiming
    Liu, Yuanning
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (02) : 784 - 789
  • [50] Citrus disease detection and classification using end-to-end anchor-based deep learning model
    Sharifah Farhana Syed-Ab-Rahman
    Mohammad Hesam Hesamian
    Mukesh Prasad
    Applied Intelligence, 2022, 52 : 927 - 938