Emergence of universal scaling in isotropic turbulence

被引:4
作者
Khurshid, Sualeh [1 ,2 ]
Donzis, Diego A. [2 ]
Sreenivasan, Katepalli R. [3 ]
机构
[1] MIT, Dept Mech Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA
[3] Univ New York, Courant Inst Math Sci New York, Dept Mech & Aerosp Engn, Dept Phys, New York, NY 11201 USA
基金
美国国家科学基金会;
关键词
INTERMITTENCY; FLUID; SIMULATIONS; SIMILARITY; STATISTICS;
D O I
10.1103/PhysRevE.107.045102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Universal properties of turbulence have been associated traditionally with very high Reynolds numbers, but recent work has shown that the onset of the power laws in derivative statistics occurs at modest microscale Reynolds numbers of the order of 10, with the corresponding exponents being consistent with those for the inertial range structure functions at very high Reynolds numbers. In this paper we use well-resolved direct numerical simulations of homogeneous and isotropic turbulence to establish this result for a range of initial conditions with different forcing mechanisms. We also show that the moments of transverse velocity gradients possess larger scaling exponents than those of the longitudinal moments, confirming past results that the former are more intermittent than the latter.
引用
收藏
页数:6
相关论文
共 46 条
  • [1] [Anonymous], 1975, Statistical fluid mechanics
  • [2] The rise of fully turbulent flow
    Barkley, Dwight
    Song, Baofang
    Mukund, Vasudevan
    Lemoult, Gregoire
    Avila, Marc
    Hof, Bjoern
    [J]. NATURE, 2015, 526 (7574) : 550 - U191
  • [3] Batchelor G. K., 1953, THEORY HOMOGENEOUS T, DOI DOI 10.1016/j.cej.2015.07.022
  • [4] REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS
    BEALE, JT
    KATO, T
    MAJDA, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) : 61 - 66
  • [5] ON THE SCALING OF 3-DIMENSIONAL HOMOGENEOUS AND ISOTROPIC TURBULENCE
    BENZI, R
    CILIBERTO, S
    BAUDET, C
    CHAVARRIA, GR
    [J]. PHYSICA D, 1995, 80 (04): : 385 - 398
  • [6] EXTENDED SELF-SIMILARITY IN TURBULENT FLOWS
    BENZI, R
    CILIBERTO, S
    TRIPICCIONE, R
    BAUDET, C
    MASSAIOLI, F
    SUCCI, S
    [J]. PHYSICAL REVIEW E, 1993, 48 (01): : R29 - R32
  • [7] Extreme velocity gradients in turbulent flows
    Buaria, Dhawal
    Pumir, Alain
    Bodenschatz, Eberhard
    Yeung, P. K.
    [J]. NEW JOURNAL OF PHYSICS, 2019, 21
  • [8] Refined similarity hypothesis for transverse structure functions in fluid turbulence
    Chen, S
    Sreenivasan, KR
    Nelkin, M
    Cao, NZ
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (12) : 2253 - 2256
  • [9] Corrsin S., 1958, 58B11 NACA RM J HOPK
  • [10] Transverse structure functions in high-Reynolds-number turbulence
    Dhruva, B
    Tsuji, Y
    Sreenivasan, KR
    [J]. PHYSICAL REVIEW E, 1997, 56 (05): : R4928 - R4930