Optimizing Wheat Yield Prediction Integrating Data from Sentinel-1 and Sentinel-2 with CatBoost Algorithm

被引:13
|
作者
Uribeetxebarria, Asier [1 ]
Castellon, Ander [1 ]
Aizpurua, Ana [1 ]
机构
[1] Basque Res & Technol Alliance BRTA, NEIKER Basque Inst Agr Res & Dev, Parque Cient & Tecnol Bizkaia,P812,Berreaga 1, Derio 48160, Spain
关键词
backscatter; gradient boosting; machine learning; NDVI; precision agriculture; VEGETATION INDEX; SOIL-MOISTURE; TIME-SERIES; LANDSAT MSS; MODEL; CORN; REFLECTANCE; VALLEY; RADAR; PLAIN;
D O I
10.3390/rs15061640
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurately estimating wheat yield is crucial for informed decision making in precision agriculture (PA) and improving crop management. In recent years, optical satellite-derived vegetation indices (Vis), such as Sentinel-2 (S2), have become widely used, but the availability of images depends on the weather conditions. For its part, Sentinel-1 (S1) backscatter data are less used in agriculture due to its complicated interpretation and processing, but is not impacted by weather. This study investigates the potential benefits of combining S1 and S2 data and evaluates the performance of the categorical boosting (CatBoost) algorithm in crop yield estimation. The study was conducted utilizing dense yield data from a yield monitor, obtained from 39 wheat (Triticum spp. L.) fields. The study analyzed three S2 images corresponding to different crop growth stages (GS) GS30, GS39-49, and GS69-75, and 13 Vis commonly used for wheat yield estimation were calculated for each image. In addition, three S1 images that were temporally close to the S2 images were acquired, and the vertical-vertical (VV) and vertical-horizontal (VH) backscatter were calculated. The performance of the CatBoost algorithm was compared to that of multiple linear regression (MLR), support vector machine (SVM), and random forest (RF) algorithms in crop yield estimation. The results showed that the combination of S1 and S2 data with the CatBoost algorithm produced a yield prediction with a root mean squared error (RMSE) of 0.24 t ha(-1), a relative RMSE (rRMSE) 3.46% and an R-2 of 0.95. The result indicates a decrease of 30% in RMSE when compared to using S2 alone. However, when this algorithm was used to estimate the yield of a whole plot, leveraging information from the surrounding plots, the mean absolute error (MAE) was 0.31 t ha(-1) which means a mean error of 4.38%. Accurate wheat yield estimation with a spatial resolution of 10 m becomes feasible when utilizing satellite data combined with CatBoost.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Soil Texture Estimation Using Radar and Optical Data from Sentinel-1 and Sentinel-2
    Bousbih, Safa
    Zribi, Mehrez
    Pelletier, Charlotte
    Gorrab, Azza
    Lili-Chabaane, Zohra
    Baghdadi, Nicolas
    Ben Aissa, Nadhira
    Mougenot, Bernard
    REMOTE SENSING, 2019, 11 (13)
  • [22] WETLAND CLASSIFICATION WITH SWIN TRANSFORMER USING SENTINEL-1 AND SENTINEL-2 DATA
    Jamali, Ali
    Mohammadimanesh, Fariba
    Mahdianpari, Masoud
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6213 - 6216
  • [23] Improving Crop Classification Accuracy with Integrated Sentinel-1 and Sentinel-2 Data: a Case Study of Barley and Wheat
    Ibrahim, Gaylan R. Faqe R.
    Rasul, Azad
    Abdullah, Haidi
    JOURNAL OF GEOVISUALIZATION AND SPATIAL ANALYSIS, 2023, 7 (02)
  • [24] Improving Crop Classification Accuracy with Integrated Sentinel-1 and Sentinel-2 Data: a Case Study of Barley and Wheat
    Gaylan R. Faqe Ibrahim
    Azad Rasul
    Haidi Abdullah
    Journal of Geovisualization and Spatial Analysis, 2023, 7
  • [25] Retrieving Surface Soil Moisture over Wheat-Covered Areas Using Data from Sentinel-1 and Sentinel-2
    Li, Yan
    Zhang, Chengcai
    Heng, Weidong
    WATER, 2021, 13 (14)
  • [26] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Mohammad Qasim
    Elmar Csaplovics
    Environmental Monitoring and Assessment, 2024, 196
  • [27] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Qasim, Mohammad
    Csaplovics, Elmar
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (03)
  • [28] Fusion of Sentinel-1 and Sentinel-2 data in mapping the impervious surfaces at city scale
    Shrestha, Binita
    Ahmad, Sajjad
    Stephen, Haroon
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2021, 193 (09)
  • [29] An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping
    Song, Xiao-Peng
    Huang, Wenli
    Hansen, Matthew C.
    Potapov, Peter
    SCIENCE OF REMOTE SENSING, 2021, 3
  • [30] Synergetic Use of Sentinel-1 and Sentinel-2 Data for Wheat-Crop Height Monitoring Using Machine Learning
    Nduku, Lwandile
    Munghemezulu, Cilence
    Mashaba-Munghemezulu, Zinhle
    Ratshiedana, Phathutshedzo Eugene
    Sibanda, Sipho
    Chirima, Johannes George
    AGRIENGINEERING, 2024, 6 (02): : 1093 - 1116