Optimizing Wheat Yield Prediction Integrating Data from Sentinel-1 and Sentinel-2 with CatBoost Algorithm

被引:13
|
作者
Uribeetxebarria, Asier [1 ]
Castellon, Ander [1 ]
Aizpurua, Ana [1 ]
机构
[1] Basque Res & Technol Alliance BRTA, NEIKER Basque Inst Agr Res & Dev, Parque Cient & Tecnol Bizkaia,P812,Berreaga 1, Derio 48160, Spain
关键词
backscatter; gradient boosting; machine learning; NDVI; precision agriculture; VEGETATION INDEX; SOIL-MOISTURE; TIME-SERIES; LANDSAT MSS; MODEL; CORN; REFLECTANCE; VALLEY; RADAR; PLAIN;
D O I
10.3390/rs15061640
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurately estimating wheat yield is crucial for informed decision making in precision agriculture (PA) and improving crop management. In recent years, optical satellite-derived vegetation indices (Vis), such as Sentinel-2 (S2), have become widely used, but the availability of images depends on the weather conditions. For its part, Sentinel-1 (S1) backscatter data are less used in agriculture due to its complicated interpretation and processing, but is not impacted by weather. This study investigates the potential benefits of combining S1 and S2 data and evaluates the performance of the categorical boosting (CatBoost) algorithm in crop yield estimation. The study was conducted utilizing dense yield data from a yield monitor, obtained from 39 wheat (Triticum spp. L.) fields. The study analyzed three S2 images corresponding to different crop growth stages (GS) GS30, GS39-49, and GS69-75, and 13 Vis commonly used for wheat yield estimation were calculated for each image. In addition, three S1 images that were temporally close to the S2 images were acquired, and the vertical-vertical (VV) and vertical-horizontal (VH) backscatter were calculated. The performance of the CatBoost algorithm was compared to that of multiple linear regression (MLR), support vector machine (SVM), and random forest (RF) algorithms in crop yield estimation. The results showed that the combination of S1 and S2 data with the CatBoost algorithm produced a yield prediction with a root mean squared error (RMSE) of 0.24 t ha(-1), a relative RMSE (rRMSE) 3.46% and an R-2 of 0.95. The result indicates a decrease of 30% in RMSE when compared to using S2 alone. However, when this algorithm was used to estimate the yield of a whole plot, leveraging information from the surrounding plots, the mean absolute error (MAE) was 0.31 t ha(-1) which means a mean error of 4.38%. Accurate wheat yield estimation with a spatial resolution of 10 m becomes feasible when utilizing satellite data combined with CatBoost.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Integrating the Sentinel-1, Sentinel-2 and topographic data into soybean yield modelling using machine learning
    Amankulova, Khilola
    Farmonov, Nizom
    Omonov, Khasan
    Abdurakhimova, Mokhigul
    Mucsi, Laszlo
    ADVANCES IN SPACE RESEARCH, 2024, 73 (08) : 4052 - 4066
  • [2] Assimilating Soil Moisture Retrieved from Sentinel-1 and Sentinel-2 Data into WOFOST Model to Improve Winter Wheat Yield Estimation
    Zhuo, Wen
    Huang, Jianxi
    Li, Li
    Zhang, Xiaodong
    Ma, Hongyuan
    Gao, Xinran
    Huang, Hai
    Xu, Baodong
    Xiao, Xiangming
    REMOTE SENSING, 2019, 11 (13)
  • [3] Estimation of barley yield from Sentinel-1 and sentinel-2 imagery and climatic variables
    Iranzo, Cristian
    Montorio, Raquel
    Garcia-Martin, Alberto
    REVISTA DE TELEDETECCION, 2022, (59): : 61 - 72
  • [4] Understanding wheat lodging using multi-temporal Sentinel-1 and Sentinel-2 data
    Chauhan, Sugandh
    Darvishzadeh, Roshanak
    Lu, Yi
    Boschetti, Mirco
    Nelson, Andrew
    REMOTE SENSING OF ENVIRONMENT, 2020, 243 (243)
  • [5] Integrating GEDI, Sentinel-2, and Sentinel-1 imagery for tree crops mapping
    Adrah, Esmaeel
    Wong, Jesse Pan
    Yin, He
    REMOTE SENSING OF ENVIRONMENT, 2025, 319
  • [6] High-precision sugarcane yield prediction by integrating 10-m Sentinel-1 VOD and Sentinel-2 GRVI indexes
    Zhu, Lihong
    Liu, Xiangnan
    Wang, Zheng
    Tian, Lingwen
    EUROPEAN JOURNAL OF AGRONOMY, 2023, 149
  • [7] SENTINEL-1 & SENTINEL-2 DATA FOR SOIL TILLAGE CHANGE DETECTION
    Satalino, G.
    Mattia, F.
    Balenzano, A.
    Lovergine, F. P.
    Rinaldi, M.
    De Santis, A. P.
    Ruggieri, S.
    Nafria Garcia, D. A.
    Paredes Gomez, V.
    Ceschia, E.
    Planells, M.
    Le Toan, T.
    Ruiz, A.
    Moreno, J. F.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6627 - 6630
  • [8] Improving the Accuracy of Multiple Algorithms for Crop Classification by Integrating Sentinel-1 Observations with Sentinel-2 Data
    Chakhar, Amal
    Hernandez-Lopez, David
    Ballesteros, Rocio
    Moreno, Miguel A.
    REMOTE SENSING, 2021, 13 (02) : 1 - 21
  • [9] Canonical Analysis of Sentinel-1 Radar and Sentinel-2 Optical Data
    Nielsen, Allan A.
    Larsen, Rasmus
    IMAGE ANALYSIS, SCIA 2017, PT II, 2017, 10270 : 147 - 158
  • [10] Application of Sentinel-1 and Sentinel-2 data to conduct reconnaissance analyses
    Jenerowicz, Agnieszka
    Orych, Agata
    Siok, Katarzyna
    Smiarowski, Michal
    ELECTRO-OPTICAL REMOTE SENSING XIII, 2019, 11160