7-Deazaguanines in DNA: functional and structural elucidation of a DNA modification system

被引:6
作者
Gedara, Samanthi Herath [1 ]
Wood, Evan [2 ]
Gustafson, Andrew [1 ,7 ]
Liang, Cui [3 ]
Hung, Shr-Hau [2 ,6 ]
Savage, Joshua [2 ]
Phan, Phuc [2 ]
Luthra, Amit [2 ]
de Crecy-Lagard, Valerie [4 ]
Dedon, Peter [3 ,5 ]
Swairjo, Manal A. [2 ,6 ]
Iwata-Reuyl, Dirk [1 ]
机构
[1] Portland State Univ, Dept Chem, Portland, OR 97201 USA
[2] San Diego State Univ, Dept Chem & Biochem, San Diego, CA 92182 USA
[3] Singapore MIT Alliance Res & Technol, Singapore 138602, Singapore
[4] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32611 USA
[5] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[6] San Diego State Univ, Viral Informat Inst, San Diego, CA 92182 USA
[7] Oregon Hlth & Sci Univ, Chem Physiol & Biochem, Portland, OR 97239 USA
基金
美国国家卫生研究院; 新加坡国家研究基金会;
关键词
RNA-GUANINE TRANSGLYCOSYLASE; CRYSTAL-STRUCTURE; SCATTERING; MECHANISM; ENZYME; BASE; BIOSYNTHESIS; REPLACEMENT; ARCHAEOSINE; INSERTION;
D O I
10.1093/nar/gkad141
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The modified nucleosides 2 '-deoxy-7-cyano- and 2 '-deoxy-7-amido-7-deazaguanosine (dPreQ(0) and dADG, respectively) recently discovered in DNA are the products of the bacterial queuosine tRNA modification pathway and the dpd gene cluster, the latter of which encodes proteins that comprise the elaborate Dpd restriction-modification system present in diverse bacteria. Recent genetic studies implicated the dpdA, dpdB and dpdC genes as encoding proteins necessary for DNA modification, with dpdD-dpdK contributing to the restriction phenotype. Here we report the in vitro reconstitution of the Dpd modification machinery from Salmonella enterica serovar Montevideo, the elucidation of the roles of each protein and the X-ray crystal structure of DpdA supported by small-angle X-ray scattering analysis of DpdA and DpdB, the former bound to DNA. While the homology of DpdA with the tRNA-dependent tRNA-guanine transglycosylase enzymes (TGT) in the queuosine pathway suggested a similar transglycosylase activity responsible for the exchange of a guanine base in the DNA for 7-cyano-7-deazaguanine (preQ(0)), we demonstrate an unexpected ATPase activity in DpdB necessary for insertion of preQ(0) into DNA, and identify several catalytically essential active site residues in DpdA involved in the transglycosylation reaction. Further, we identify a modification site for DpdA activity and demonstrate that DpdC functions independently of DpdA/B in converting preQ(0)-modified DNA to ADG-modified DNA.
引用
收藏
页码:3836 / 3854
页数:19
相关论文
共 59 条
[21]   Crystal structure of archaeosine tRNA-guanine transglycosylase [J].
Ishitani, R ;
Nureki, O ;
Fukai, S ;
Kijimoto, T ;
Nameki, N ;
Watanabe, M ;
Kondo, H ;
Sekine, M ;
Okada, N ;
Nishimura, S ;
Yokoyama, S .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 318 (03) :665-677
[22]   Alternative tertiary structure of tRNA for recognition by a posttranscriptional modification enzyme [J].
Ishitani, R ;
Nureki, O ;
Nameki, N ;
Okada, N ;
Nishimura, S ;
Yokoyama, S .
CELL, 2003, 113 (03) :383-394
[23]  
Iwata-Reuyl D., 2009, DNA And RNA modification enzymes: structure, mechanism, function, and evolution, P377
[24]   Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA [J].
Iyer, Lakshminarayan M. ;
Zhang, Dapeng ;
Burroughs, A. Maxwell ;
Aravind, L. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (16) :7635-7655
[25]   CTP regulates membrane-binding activity of the nucleoid occlusion Noc [J].
Jalal, Adam S. B. ;
Tran, Ngat T. ;
Wu, Ling J. ;
Ramakrishnan, Karunakaran ;
Rejzek, Martin ;
Gobbato, Giulia ;
Stevenson, Clare E. M. ;
Lawson, David M. ;
Errington, Jeff ;
Le, Tung B. K. .
MOLECULAR CELL, 2021, 81 (17) :3623-+
[26]   Crystal Structure of the Human tRNA Guanine Transglycosylase Catalytic Subunit QTRT1 [J].
Johannsson, Sven ;
Neumann, Piotr ;
Ficner, Ralf .
BIOMOLECULES, 2018, 8 (03)
[27]   Highly accurate protein structure prediction with AlphaFold [J].
Jumper, John ;
Evans, Richard ;
Pritzel, Alexander ;
Green, Tim ;
Figurnov, Michael ;
Ronneberger, Olaf ;
Tunyasuvunakool, Kathryn ;
Bates, Russ ;
Zidek, Augustin ;
Potapenko, Anna ;
Bridgland, Alex ;
Meyer, Clemens ;
Kohl, Simon A. A. ;
Ballard, Andrew J. ;
Cowie, Andrew ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Jain, Rishub ;
Adler, Jonas ;
Back, Trevor ;
Petersen, Stig ;
Reiman, David ;
Clancy, Ellen ;
Zielinski, Michal ;
Steinegger, Martin ;
Pacholska, Michalina ;
Berghammer, Tamas ;
Bodenstein, Sebastian ;
Silver, David ;
Vinyals, Oriol ;
Senior, Andrew W. ;
Kavukcuoglu, Koray ;
Kohli, Pushmeet ;
Hassabis, Demis .
NATURE, 2021, 596 (7873) :583-+
[28]   XDS [J].
Kabsch, Wolfgang .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2010, 66 :125-132
[29]   Inference of macromolecular assemblies from crystalline state [J].
Krissinel, Evgeny ;
Henrick, Kim .
JOURNAL OF MOLECULAR BIOLOGY, 2007, 372 (03) :774-797
[30]   Improved side-chain torsion potentials for the Amber ff99SB protein force field [J].
Lindorff-Larsen, Kresten ;
Piana, Stefano ;
Palmo, Kim ;
Maragakis, Paul ;
Klepeis, John L. ;
Dror, Ron O. ;
shaw, David E. .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2010, 78 (08) :1950-1958