7-Deazaguanines in DNA: functional and structural elucidation of a DNA modification system

被引:6
作者
Gedara, Samanthi Herath [1 ]
Wood, Evan [2 ]
Gustafson, Andrew [1 ,7 ]
Liang, Cui [3 ]
Hung, Shr-Hau [2 ,6 ]
Savage, Joshua [2 ]
Phan, Phuc [2 ]
Luthra, Amit [2 ]
de Crecy-Lagard, Valerie [4 ]
Dedon, Peter [3 ,5 ]
Swairjo, Manal A. [2 ,6 ]
Iwata-Reuyl, Dirk [1 ]
机构
[1] Portland State Univ, Dept Chem, Portland, OR 97201 USA
[2] San Diego State Univ, Dept Chem & Biochem, San Diego, CA 92182 USA
[3] Singapore MIT Alliance Res & Technol, Singapore 138602, Singapore
[4] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32611 USA
[5] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[6] San Diego State Univ, Viral Informat Inst, San Diego, CA 92182 USA
[7] Oregon Hlth & Sci Univ, Chem Physiol & Biochem, Portland, OR 97239 USA
基金
美国国家卫生研究院; 新加坡国家研究基金会;
关键词
RNA-GUANINE TRANSGLYCOSYLASE; CRYSTAL-STRUCTURE; SCATTERING; MECHANISM; ENZYME; BASE; BIOSYNTHESIS; REPLACEMENT; ARCHAEOSINE; INSERTION;
D O I
10.1093/nar/gkad141
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The modified nucleosides 2 '-deoxy-7-cyano- and 2 '-deoxy-7-amido-7-deazaguanosine (dPreQ(0) and dADG, respectively) recently discovered in DNA are the products of the bacterial queuosine tRNA modification pathway and the dpd gene cluster, the latter of which encodes proteins that comprise the elaborate Dpd restriction-modification system present in diverse bacteria. Recent genetic studies implicated the dpdA, dpdB and dpdC genes as encoding proteins necessary for DNA modification, with dpdD-dpdK contributing to the restriction phenotype. Here we report the in vitro reconstitution of the Dpd modification machinery from Salmonella enterica serovar Montevideo, the elucidation of the roles of each protein and the X-ray crystal structure of DpdA supported by small-angle X-ray scattering analysis of DpdA and DpdB, the former bound to DNA. While the homology of DpdA with the tRNA-dependent tRNA-guanine transglycosylase enzymes (TGT) in the queuosine pathway suggested a similar transglycosylase activity responsible for the exchange of a guanine base in the DNA for 7-cyano-7-deazaguanine (preQ(0)), we demonstrate an unexpected ATPase activity in DpdB necessary for insertion of preQ(0) into DNA, and identify several catalytically essential active site residues in DpdA involved in the transglycosylation reaction. Further, we identify a modification site for DpdA activity and demonstrate that DpdC functions independently of DpdA/B in converting preQ(0)-modified DNA to ADG-modified DNA.
引用
收藏
页码:3836 / 3854
页数:19
相关论文
共 59 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[3]   Hypermodification of tRNA in thermophilic archaea -: Cloning, overexpression, and characterization of tRNA-guanine transglycosylase from Methanococcus jannaschii [J].
Bai, Y ;
Fox, DT ;
Lacy, JA ;
Van Lanen, SG ;
Iwata-Reuyl, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (37) :28731-28738
[4]   Evolution of eukaryotic cysteine sulfinic acid reductase, sulfiredoxin (Srx), from bacterial chromosome partitioning protein ParB [J].
Basu, MK ;
Koonin, EV .
CELL CYCLE, 2005, 4 (07) :947-952
[5]   Homodimer Architecture of QTRT2, the Noncatalytic Subunit of the Eukaryotic tRNA-Guanine Transglycosylase [J].
Behrens, Christina ;
Biela, Irma ;
Petiot-Becard, Stephanie ;
Botzanowski, Thomas ;
Cianferani, Sarah ;
Sager, Christoph P. ;
Klebe, Gerhard ;
Heine, Andreas ;
Reuter, Klaus .
BIOCHEMISTRY, 2018, 57 (26) :3953-3965
[6]   MODOMICS: a database of RNA modification pathways. 2017 update [J].
Boccaletto, Pietro ;
Machnicka, Magdalena A. ;
Purta, Elzbieta ;
Piatkowski, Pawe ;
Baginski, Blazej ;
Wirecki, Tomasz K. ;
de Crecy-Lagard, Valerie ;
Ross, Robert ;
Limbach, Patrick A. ;
Kotter, Annika ;
Helm, Mark ;
Bujnicki, Janusz M. .
NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) :D303-D307
[7]   Flexible adaptations in the structure of the tRNA-modifying enzyme tRNA-guanine transglycosylase and their implications for substrate selectivity, reaction mechanism and structure-based drug design [J].
Brenk, R ;
Stubbs, MT ;
Heine, A ;
Reuter, K ;
Klebe, G .
CHEMBIOCHEM, 2003, 4 (10) :1066-1077
[8]   Structure and function of TatD exonuclease in DNA repair [J].
Chen, Yi-Chen ;
Li, Chia-Lung ;
Hsiao, Yu-Yuan ;
Duh, Yulander ;
Yuan, Hanna S. .
NUCLEIC ACIDS RESEARCH, 2014, 42 (16) :10776-10785
[9]   Deoxyinosine and 7-Deaza-2-Deoxyguanosine as Carriers of Genetic Information in the DNA of Campylobacter Viruses [J].
Crippen, Clay S. ;
Lee, Yan-Jiun ;
Hutinet, Geoffrey ;
Shajahan, Asif ;
Sacher, Jessica C. ;
Azadi, Parastoo ;
de Crecy-Lagard, Valerie ;
Weigele, Peter R. ;
Szymanski, Christine M. .
JOURNAL OF VIROLOGY, 2019, 93 (23)
[10]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132