Multiple Nontrivial Solutions for Superlinear Double Phase Problems Via Morse Theory

被引:0
作者
Ge, Bin [1 ]
Zhang, Beilei [1 ]
Yuan, Wenshuo [1 ]
机构
[1] Harbin Engn Univ, Coll Math Sci, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Double phase problems; Musielak-Orlicz space; Variational method; Critical groups; Nonlinear regularity; Multiple solution; ORLICZ SPACES; EXISTENCE; REGULARITY; FUNCTIONALS;
D O I
10.1007/s11401-023-0004-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is the study of a double phase problems involving superlinear nonlinearities with a growth that need not satisfy the Ambrosetti-Rabinowitz condition. Using variational tools together with suitable truncation and minimax techniques with Morse theory, the authors prove the existence of one and three nontrivial weak solutions, respectively.
引用
收藏
页码:49 / 66
页数:18
相关论文
共 41 条
[1]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[2]   Harnack inequalities for double phase functionals [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :206-222
[3]   Critical point theory for asymptotically quadratic functionals and applications to problems with resonance [J].
Bartsch, T ;
Li, SJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (03) :419-441
[4]   Variational inequalities in Musielak-Orlicz-Sobolev spaces [J].
Benkirane, A. ;
El Vally, M. Sidi .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (05) :787-811
[5]   Double phase problems with variable growth [J].
Cencelj, Matija ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 :270-287
[6]  
Cerami G., 1978, RC 1 LOMB SCI LETT, V112, P332
[7]  
Chang K.C., 1993, Progress in Nonlinear Differential Equations and their Applications, V6, DOI [10.1007/978-1-4612-0385-8, DOI 10.1007/978-1-4612-0385-8]
[8]  
Chang K.C., 1996, Critical Point Theory and Applications
[9]   Eigenvalues for double phase variational integrals [J].
Colasuonno, Francesca ;
Squassina, Marco .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) :1917-1959
[10]   Bounded Minimisers of Double Phase Variational Integrals [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (01) :219-273