Integrated technologies for continuous monitoring of organs-on-chips: Current challenges and potential solutions

被引:22
作者
del Rio, Jonathan Sabate [1 ]
Ro, Jooyoung [1 ,2 ]
Yoon, Heejeong [2 ]
Park, Tae-Eun [2 ]
Cho, Yoon-Kyoung [1 ,2 ]
机构
[1] Inst Basic Sci IBS, Ctr Soft & Living Matter, Ulsan 44919, South Korea
[2] Ulsan Natl Inst Sci & Technol UNIST, Dept Biomed Engn, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
Biosensors; Organ-on-a-chip; Microphysiological systems; Tissue chips; In vitro models; A-CHIP; ELECTRICAL-RESISTANCE; MULTIELECTRODE ARRAY; MINI-MICROSCOPE; DNA BIOSENSORS; TISSUE MODELS; IN-VITRO; PLATFORM; CULTURE; CELLS;
D O I
10.1016/j.bios.2022.115057
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Organs-on-chips (OoCs) are biomimetic in vitro systems based on microfluidic cell cultures that recapitulate the in vivo physicochemical microenvironments and the physiologies and key functional units of specific human organs. These systems are versatile and can be customized to investigate organ-specific physiology, pathology, or pharmacology. They are more physiologically relevant than traditional two-dimensional cultures, can potentially replace the animal models or reduce the use of these models, and represent a unique opportunity for the development of personalized medicine when combined with human induced pluripotent stem cells. Continuous monitoring of important quality parameters of OoCs via a label-free, non-destructive, reliable, high-throughput, and multiplex method is critical for assessing the conditions of these systems and generating relevant analytical data; moreover, elaboration of quality predictive models is required for clinical trials of OoCs. Presently, these analytical data are obtained by manual or automatic sampling and analyzed using single-point, off-chip tradi-tional methods. In this review, we describe recent efforts to integrate biosensing technologies into OoCs for monitoring the physiologies, functions, and physicochemical microenvironments of OoCs. Furthermore, we present potential alternative solutions to current challenges and future directions for the application of artificial intelligence in the development of OoCs and cyber-physical systems. These "smart" OoCs can learn and make autonomous decisions for process optimization, self-regulation, and data analysis.
引用
收藏
页数:16
相关论文
共 192 条
[1]   Human Organ-on-a-Chip Microphysiological Systems to Model Musculoskeletal Pathologies and Accelerate Therapeutic Discovery [J].
Ajalik, Raquel E. E. ;
Alenchery, Rahul G. G. ;
Cognetti, John S. S. ;
Zhang, Victor Z. Z. ;
McGrath, James L. L. ;
Miller, Benjamin L. L. ;
Awad, Hani A. A. .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
[2]   Microfluidic integration of regeneratable electrochemical affinity-based biosensors for continual monitoring of organ-on-a-chip devices [J].
Aleman, Julio ;
Kilic, Tugba ;
Mille, Luis S. ;
Shin, Su Ryon ;
Zhang, Yu Shrike .
NATURE PROTOCOLS, 2021, 16 (05) :2564-2593
[3]   Metal organic frameworks in electrochemical and optical sensing platforms: a review [J].
Anik, Ulku ;
Timur, Suna ;
Dursun, Zekerya .
MICROCHIMICA ACTA, 2019, 186 (03)
[4]   A Novel Microphysiological Colon Platform to Decipher Mechanisms Driving Human Intestinal Permeability [J].
Apostolou, Athanasia ;
Panchakshari, Rohit A. ;
Banerjee, Antara ;
Manatakis, Dimitris, V ;
Paraskevopoulou, Maria D. ;
Luc, Raymond ;
Abu-Ali, Galeb ;
Dimitriou, Alexandra ;
Lucchesi, Carolina ;
Kulkarni, Gauri ;
Maulana, Tengku Ibrahim ;
Kasendra, Magdalena ;
Kerns, Jordan S. ;
Bleck, Bertram ;
Ewart, Lorna ;
Manolakos, Elias S. ;
Hamilton, Geraldine A. ;
Giallourakis, Cosmas ;
Karalis, Katia .
CELLULAR AND MOLECULAR GASTROENTEROLOGY AND HEPATOLOGY, 2021, 12 (05) :1719-1741
[5]   Barriers-on-chips: Measurement of barrier function of tissues in organs-on-chips [J].
Arik, Yusuf B. ;
van der Helm, Marinke W. ;
Odijk, Mathieu ;
Segerink, Loes I. ;
Passier, Robert ;
van den Berg, Albert ;
van der Meer, Andries D. .
BIOMICROFLUIDICS, 2018, 12 (04)
[6]   High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows† [J].
Azizgolshani, H. ;
Coppeta, J. R. ;
Vedula, E. M. ;
Marr, E. E. ;
Cain, B. P. ;
Luu, R. J. ;
Lech, M. P. ;
Kann, S. H. ;
Mulhern, T. J. ;
Tandon, V. ;
Tan, K. ;
Haroutunian, N. J. ;
Keegan, P. ;
Rogers, M. ;
Gard, A. L. ;
Baldwin, K. B. ;
de Souza, J. C. ;
Hoefler, B. C. ;
Bale, S. S. ;
Kratchman, L. B. ;
Zorn, A. ;
Patterson, A. ;
Kim, E. S. ;
Petrie, T. A. ;
Wiellette, E. L. ;
Williams, C. ;
Isenberg, B. C. ;
Charest, J. L. .
LAB ON A CHIP, 2021, 21 (08) :1454-1474
[7]   A novel multi-frequency trans-endothelial electrical resistance (MTEER) sensor array to monitor blood-brain barrier integrity [J].
Badiola-Mateos, Maider ;
Di Giuseppe, Davide ;
Paoli, Roberto ;
Lopez-Martinez, Maria Jose ;
Mencattini, Arianna ;
Samitier, Josep ;
Martinelli, Eugenio .
SENSORS AND ACTUATORS B-CHEMICAL, 2021, 334
[8]   A Simple Microfluidic Platform for Long-Term Analysis and Continuous Dual-Imaging Detection of T-Cell Secreted IFN-gamma and IL-2 on Antibody-Based Biochip [J].
Baganizi, Dieudonne R. ;
Leroy, Loiec ;
Laplatine, Loiec ;
Fairley, Stacie J. ;
Heidmann, Samuel ;
Menad, Samia ;
Livache, Thierry ;
Marche, Patrice N. ;
Roupioz, Yoann .
BIOSENSORS-BASEL, 2015, 5 (04) :750-767
[9]   A Review on Humidity, Temperature and Strain Printed Sensors-Current Trends and Future Perspectives [J].
Barmpakos, Dimitris ;
Kaltsas, Grigoris .
SENSORS, 2021, 21 (03) :1-24
[10]   Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction [J].
Bavli, Danny ;
Prill, Sebastian ;
Ezra, Elishai ;
Levy, Gahl ;
Cohen, Merav ;
Vinken, Mathieu ;
Vanfleteren, Jan ;
Jaeger, Magnus ;
Nahmias, Yaakov .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (16) :E2231-E2240