Compressive strength prediction of hollow concrete masonry blocks using artificial intelligence algorithms

被引:43
|
作者
Fakharian, Pouyan [1 ,2 ]
Eidgahee, Danial Rezazadeh [3 ]
Akbari, Mahdi [1 ]
Jahangir, Hashem [4 ]
Taeb, Amir Ali [2 ]
机构
[1] Semnan Univ, Fac Civil Engn, Semnan 3513119111, Iran
[2] Fakhr Razi Inst Higher Educ, Dept Civil Engn, Saveh, Iran
[3] Ferdowsi Univ Mashhad FUM, Fac Engn, Dept Civil Engn, Mashhad, Iran
[4] Univ Birjand, Dept Civil Engn, Birjand, Iran
关键词
Concrete masonry prism; Compressive strength; Artificial neural network; Combinatorial Group method of data handling; Gene expression programming; NEURAL-NETWORKS; ELASTIC-MODULUS; BEHAVIOR; PRISMS; MECHANICS;
D O I
10.1016/j.istruc.2022.12.007
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, artificial intelligence algorithms are proposed for estimating the compressive strength of hollow concrete block masonry prisms, including neural networks (ANN), combinatorial methods of group data handling (GMDH-Combi), and gene expression programming (GEP). To train and test the proposed models, 102 samples of hollow concrete prisms from previous research works were collected. The height-to-width ratio of hollow con-crete prisms and the compressive strength of mortar and concrete blocks were considered as inputs. In order to evaluate the validity and predictability of the proposed models, they were compared with empirical models and models presented in codes and standards. Among the suggested and existing models, the ANN model with an R -value of 0.950 and MAPE error value of 6.921% had the best performance, which with a more complicated equation, can be used in the scientific aspect. In contrast, the other two proposed models (GMDH-Combi and GEP) with acceptable performance and accuracy levels and more simple closed-form equations can be utilized in practical aspects. Based on the parametric analysis, the proposed models were highly efficient and accurate. Moreover, the sensitivity analysis results showed that in all three proposed models of ANN, GMDH-Combi, and GEP, the compressive strength of concrete blocks was the most effective input parameter in the compressive strength estimation of hollow concrete prisms.
引用
收藏
页码:1790 / 1802
页数:13
相关论文
共 50 条
  • [21] Predicting the Compressive Strength of Rubberized Concrete Using Artificial Intelligence Methods
    Gregori, Amedeo
    Castoro, Chiara
    Venkiteela, Giri
    SUSTAINABILITY, 2021, 13 (14)
  • [22] Spatial variability and sensitivity analysis on the compressive strength of hollow concrete block masonry wallettes
    Zhu, Fei
    Zhou, Qiang
    Wang, Fenglai
    Yang, Xu
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 140 : 129 - 138
  • [23] Optimizing compressive strength prediction in eco-friendly recycled concrete via artificial intelligence models
    Chen, Lihua
    Nouri, Younes
    Allahyarsharahi, Nazanin
    Naderpour, Hosein
    Eidgahee, Danial Rezazadeh
    Fakharian, Pouyan
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2025, 8 (01)
  • [24] Mixed artificial intelligence models for compressive strength prediction and analysis of fly ash concrete
    Liang, Wei
    Yin, Wei
    Zhong, Yu
    Tao, Qian
    Li, Kunpeng
    Zhu, Zhanyuan
    Zou, Zuyin
    Zeng, Yusheng
    Yuan, Shucheng
    Chen, Han
    ADVANCES IN ENGINEERING SOFTWARE, 2023, 185
  • [25] Artificial Intelligence Prediction of One-Part Geopolymer Compressive Strength for Sustainable Concrete
    Abdel-Mongy, Mohamed
    Iqbal, Mudassir
    Farag, M.
    Yosri, Ahmed. M.
    Alsharari, Fahad
    Yousef, Saif Eldeen A. S.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 141 (01): : 525 - 543
  • [26] Prediction model for compressive strength of basic concrete mixture using artificial neural networks
    Srđan Kostić
    Dejan Vasović
    Neural Computing and Applications, 2015, 26 : 1005 - 1024
  • [27] Prediction model for compressive strength of basic concrete mixture using artificial neural networks
    Kostic, Srdan
    Vasovic, Dejan
    NEURAL COMPUTING & APPLICATIONS, 2015, 26 (05) : 1005 - 1024
  • [28] Influence of Loading Direction on Compressive Strength of Concrete Block Masonry
    Rafi, Muhammad Masood
    Khan, Sher
    PRACTICE PERIODICAL ON STRUCTURAL DESIGN AND CONSTRUCTION, 2024, 29 (04)
  • [29] Estimation of compressive strength of concrete with manufactured sand and natural sand using interpretable artificial intelligence
    Liu, Xiaodong
    Mei, Shengqi
    Wang, Xingju
    Li, Xufeng
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 21
  • [30] Experimental dataset of masonry prisms with hollow concrete blocks
    Chavez-Gomez, Jorge H.
    Alvarez-Perez, Jose
    Mesa-Lavista, Milena
    Garcia-Cedeno, Ramon
    Carpio-Santamaria, Franco A.
    Fajardo-San-Miguel, G.
    Yepez-Rincon, Fabiola D.
    DATA IN BRIEF, 2024, 53