Analysis of power loss in forward converter transformer using a novel machine learning-based optimization framework

被引:3
|
作者
Patil, Pavankumar R. [1 ]
Tanavade, Satish [2 ]
Dinesh, M. N. [3 ]
机构
[1] Sharad Inst Technol, Dept Elect Engn, Coll Engn, Yadrav 416121, Maharashtra, India
[2] Natl Univ Sci & Technol, Coll Engn, Dept Elect & Commun Engn, Muscat, Oman
[3] RV Coll Engn, Dept Elect & Elect Engn, Bengaluru 560059, Karnataka, India
关键词
Forward converter; Machine learning; Optimization; Power loss; Transformer; Wind system; KRILL HERD ALGORITHM; INPUT; DESIGN; DRIVE;
D O I
10.1007/s00500-022-07491-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In wind energy systems, high voltage gain and high power-based forward converters are mainly used for switched-mode power supplies. However, due to the wide range of load usage in grid systems, the reliability and power loss in forward converter-based system performance became crucial. Many earlier researches are conducted to validate the performance of forward converters in renewable resources. But, effective improvement is not achieved for wind applications. Thus, in this paper, the novel grey wolf-based boosting intelligent frame (GWbBIF) control algorithm is proposed in forward converter switching controls. The gain of the controller and duty cycle of the converter is tuned by the proposed control approach. Consequently, the power loss from the wind transformer is optimized by the proposed grey wolf fitness function. The implementation of this research has been done on the MATLAB/Simulink platform. The simulation outcomes of the proposed system are compared with various conventional techniques in terms of total harmonic distortion (THD), power loss, stability, error, driving circuit, etc. While compared with the other methods, the proposed methods effectively show the optimal performance of forward converter in wind system by reduced power loss and improved reliability that is considered as the significant aspects while estimating the entire system.
引用
收藏
页码:3733 / 3749
页数:17
相关论文
共 50 条
  • [41] Machine learning-based multi-objective prestress optimization framework of suspend dome structure and case study
    Zhu, Mingliang
    Wang, Jin
    Hu, Xiangchen
    Dong, Shilin
    ENGINEERING STRUCTURES, 2025, 322
  • [42] A framework for developing a machine learning-based finite element model for structural analysis
    Li, Gang
    Luo, Rui
    Yu, Ding-Hao
    Computers and Structures, 2025, 307
  • [43] Framework for Testing Robustness of Machine Learning-Based Classifiers
    Chuah, Joshua
    Kruger, Uwe
    Wang, Ge
    Yan, Pingkun
    Hahn, Juergen
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (08):
  • [44] Optimizing diabetes classification with a machine learning-based framework
    Xin Feng
    Yihuai Cai
    Ruihao Xin
    BMC Bioinformatics, 24
  • [45] Optimizing diabetes classification with a machine learning-based framework
    Feng, Xin
    Cai, Yihuai
    Xin, Ruihao
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [46] Machine Learning-Based Cybersecurity Framework for IoT Devices
    Arabelli, Rajeshwarrao
    Buradkar, Mrunalini
    Lakshmaji, Kotla
    Dube, Anand Prakash
    Shiba, Mary C.
    Geetha, B. T.
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [47] Machine Learning-Based Optimization of a Mini-Channel Heatsink Geometry
    Saeed, Muhammed
    Kalule, Ramanzani S. S.
    Berrouk, Abdallah S. S.
    Alshehhi, Mohamed
    Almatrafi, Eydhah
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (09) : 12107 - 12124
  • [48] Machine learning-based optimization of the design of composite pillars for dry adhesives
    Luo, Aoyi
    Zhang, Hang
    Turner, Kevin T.
    EXTREME MECHANICS LETTERS, 2022, 54
  • [49] Machine Learning for Industry 4.0: A Systematic Review Using Deep Learning-Based Topic Modelling
    Mazzei, Daniele
    Ramjattan, Reshawn
    SENSORS, 2022, 22 (22)
  • [50] Machine learning-based optimization of segmented thermoelectric power generators using temperature-dependent performance properties
    Demeke, Wabi
    Ryu, Byungki
    Ryu, Seunghwa
    APPLIED ENERGY, 2024, 355