Machine learning coarse-grained potentials of protein thermodynamics

被引:47
作者
Majewski, Maciej [1 ,2 ]
Perez, Adria [1 ,2 ]
Tholke, Philipp [1 ]
Doerr, Stefan [2 ]
Charron, Nicholas E. [3 ,4 ,5 ]
Giorgino, Toni [6 ]
Husic, Brooke E. [7 ,8 ,9 ,10 ]
Clementi, Cecilia [3 ,4 ,5 ,11 ]
Noe, Frank [5 ,7 ,11 ,12 ]
De Fabritiis, Gianni [1 ,2 ,13 ]
机构
[1] Univ Pompeu Fabra, Sci Computat Lab, Biomed Res Pk PRBB,Carrer Dr Aiguader 88, Barcelona 08003, Spain
[2] Acellera Labs, Doctor Trueta 183, Barcelona 08005, Spain
[3] Rice Univ, Dept Phys, Houston, TX 77005 USA
[4] Rice Univ, Ctr Theoret Biol Phys, Houston, TX 77005 USA
[5] FU Berlin, Dept Phys, Arnimallee 12, D-14195 Berlin, Germany
[6] Natl Res Council CNR IBF, Inst Biophys, I-20133 Milan, Italy
[7] FU Berlin, Dept Mathe & Comp Sci, Arnimallee 12, D-14195 Berlin, Germany
[8] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08540 USA
[9] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08540 USA
[10] Princeton Univ, Ctr Phys Biol Funct, Princeton, NJ 08540 USA
[11] Rice Univ, Dept Chem, Houston, TX 77005 USA
[12] Microsoft Res AI4Sci, Karl Liebknecht Str 32, D-10178 Berlin, Germany
[13] Inst Catalana Recerca & Estudis Avancats ICR, Passeig Lluis Companys 23, Barcelona 08010, Spain
基金
美国国家卫生研究院; 欧洲研究理事会; 欧盟地平线“2020”; 美国国家科学基金会;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; FORCE-FIELD; STRUCTURE PREDICTION; ENERGY LANDSCAPES; STATE MODELS; PERSPECTIVE; KINETICS;
D O I
10.1038/s41467-023-41343-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics.
引用
收藏
页数:13
相关论文
共 97 条
[11]   AWSEM-MD: Protein Structure Prediction Using Coarse-Grained Physical Potentials and Bioinformatically Based Local Structure Biasing [J].
Davtyan, Aram ;
Schafer, Nicholas P. ;
Zheng, Weihua ;
Clementi, Cecilia ;
Wolynes, Peter G. ;
Papoian, Garegin A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (29) :8494-8503
[12]   Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase [J].
Diez, M ;
Zimmermann, B ;
Börsch, M ;
König, M ;
Schweinberger, E ;
Steigmiller, S ;
Reuter, R ;
Felekyan, S ;
Kudryavtsev, V ;
Seidel, CAM ;
Gräber, P .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2004, 11 (02) :135-141
[13]   HTMD: High-Throughput Molecular Dynamics for Molecular Discovery [J].
Doerr, S. ;
Harvey, M. J. ;
Noe, Frank ;
De Fabritiis, G. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (04) :1845-1852
[14]   On-the-Fly Learning and Sampling of Ligand Binding by High-Throughput Molecular Simulations [J].
Doerr, S. ;
De Fabritiis, G. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (05) :2064-2069
[15]  
Doerr Stefan, 2023, Zenodo, DOI 10.5281/ZENODO.8155115
[16]   TorchMD: A Deep Learning Framework for Molecular Simulations [J].
Doerr, Stefan ;
Majewski, Maciej ;
Perez, Adria ;
Kramer, Andreas ;
Clementi, Cecilia ;
Noe, Frank ;
Giorgino, Toni ;
De Fabritiis, Gianni .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (04) :2355-2363
[17]   Machine learned coarse-grained protein force-fields: Are we there yet? [J].
Durumeric, Aleksander E. P. ;
Charron, Nicholas E. ;
Templeton, Clark ;
Musil, Felix ;
Bonneau, Klara ;
Pasos-Trejo, Aldo S. ;
Chen, Yaoyi ;
Kelkar, Atharva ;
Noe, Frank ;
Clementi, Cecilia .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2023, 79
[18]  
Duvenaudt D, 2015, ADV NEUR IN, V28
[19]   Intrinsic dynamics of an enzyme underlies catalysis [J].
Eisenmesser, EZ ;
Millet, O ;
Labeikovsky, W ;
Korzhnev, DM ;
Wolf-Watz, M ;
Bosco, DA ;
Skalicky, JJ ;
Kay, LE ;
Kern, D .
NATURE, 2005, 438 (7064) :117-121
[20]  
Falcon W. A., 2019, GitHub repository