Machine learning coarse-grained potentials of protein thermodynamics

被引:33
作者
Majewski, Maciej [1 ,2 ]
Perez, Adria [1 ,2 ]
Tholke, Philipp [1 ]
Doerr, Stefan [2 ]
Charron, Nicholas E. [3 ,4 ,5 ]
Giorgino, Toni [6 ]
Husic, Brooke E. [7 ,8 ,9 ,10 ]
Clementi, Cecilia [3 ,4 ,5 ,11 ]
Noe, Frank [5 ,7 ,11 ,12 ]
De Fabritiis, Gianni [1 ,2 ,13 ]
机构
[1] Univ Pompeu Fabra, Sci Computat Lab, Biomed Res Pk PRBB,Carrer Dr Aiguader 88, Barcelona 08003, Spain
[2] Acellera Labs, Doctor Trueta 183, Barcelona 08005, Spain
[3] Rice Univ, Dept Phys, Houston, TX 77005 USA
[4] Rice Univ, Ctr Theoret Biol Phys, Houston, TX 77005 USA
[5] FU Berlin, Dept Phys, Arnimallee 12, D-14195 Berlin, Germany
[6] Natl Res Council CNR IBF, Inst Biophys, I-20133 Milan, Italy
[7] FU Berlin, Dept Mathe & Comp Sci, Arnimallee 12, D-14195 Berlin, Germany
[8] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08540 USA
[9] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08540 USA
[10] Princeton Univ, Ctr Phys Biol Funct, Princeton, NJ 08540 USA
[11] Rice Univ, Dept Chem, Houston, TX 77005 USA
[12] Microsoft Res AI4Sci, Karl Liebknecht Str 32, D-10178 Berlin, Germany
[13] Inst Catalana Recerca & Estudis Avancats ICR, Passeig Lluis Companys 23, Barcelona 08010, Spain
基金
美国国家科学基金会; 美国国家卫生研究院; 欧洲研究理事会; 欧盟地平线“2020”;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; FORCE-FIELD; STRUCTURE PREDICTION; ENERGY LANDSCAPES; STATE MODELS; PERSPECTIVE; KINETICS;
D O I
10.1038/s41467-023-41343-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics.
引用
收藏
页数:13
相关论文
共 97 条
[1]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[2]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[3]   A Data-Driven Perspective on the Hierarchical Assembly of Molecular Structures [J].
Boninsegna, Lorenzo ;
Banisch, Ralf ;
Clementi, Cecilia .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (01) :453-460
[4]   High-Throughput All-Atom Molecular Dynamics Simulations Using Distributed Computing [J].
Buch, I. ;
Harvey, M. J. ;
Giorgino, T. ;
Anderson, D. P. ;
De Fabritiis, G. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2010, 50 (03) :397-403
[5]   Quantifying the roughness on the free energy landscape: Entropic bottlenecks and protein folding rates [J].
Chavez, LL ;
Onuchic, JN ;
Clementi, C .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (27) :8426-8432
[6]   Machine learning implicit solvation for molecular dynamics [J].
Chen, Yaoyi ;
Kraemer, Andreas ;
Charron, Nicholas E. ;
Husic, Brooke E. ;
Clementi, Cecilia ;
Noe, Frank .
JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (08)
[7]   Topological and energetic factors: What determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins [J].
Clementi, C ;
Nymeyer, H ;
Onuchic, JN .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 298 (05) :937-953
[9]   Balancing energy and entropy: A minimalist model for the characterization of protein folding landscapes [J].
Das, P ;
Matysiak, S ;
Clementi, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (29) :10141-10146
[10]   Macromolecular modeling with Rosetta [J].
Das, Rhiju ;
Baker, David .
ANNUAL REVIEW OF BIOCHEMISTRY, 2008, 77 :363-382