共 97 条
Machine learning coarse-grained potentials of protein thermodynamics
被引:33
作者:
Majewski, Maciej
[1
,2
]
Perez, Adria
[1
,2
]
Tholke, Philipp
[1
]
Doerr, Stefan
[2
]
Charron, Nicholas E.
[3
,4
,5
]
Giorgino, Toni
[6
]
Husic, Brooke E.
[7
,8
,9
,10
]
Clementi, Cecilia
[3
,4
,5
,11
]
Noe, Frank
[5
,7
,11
,12
]
De Fabritiis, Gianni
[1
,2
,13
]
机构:
[1] Univ Pompeu Fabra, Sci Computat Lab, Biomed Res Pk PRBB,Carrer Dr Aiguader 88, Barcelona 08003, Spain
[2] Acellera Labs, Doctor Trueta 183, Barcelona 08005, Spain
[3] Rice Univ, Dept Phys, Houston, TX 77005 USA
[4] Rice Univ, Ctr Theoret Biol Phys, Houston, TX 77005 USA
[5] FU Berlin, Dept Phys, Arnimallee 12, D-14195 Berlin, Germany
[6] Natl Res Council CNR IBF, Inst Biophys, I-20133 Milan, Italy
[7] FU Berlin, Dept Mathe & Comp Sci, Arnimallee 12, D-14195 Berlin, Germany
[8] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08540 USA
[9] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08540 USA
[10] Princeton Univ, Ctr Phys Biol Funct, Princeton, NJ 08540 USA
[11] Rice Univ, Dept Chem, Houston, TX 77005 USA
[12] Microsoft Res AI4Sci, Karl Liebknecht Str 32, D-10178 Berlin, Germany
[13] Inst Catalana Recerca & Estudis Avancats ICR, Passeig Lluis Companys 23, Barcelona 08010, Spain
基金:
美国国家科学基金会;
美国国家卫生研究院;
欧洲研究理事会;
欧盟地平线“2020”;
关键词:
MOLECULAR-DYNAMICS SIMULATIONS;
FORCE-FIELD;
STRUCTURE PREDICTION;
ENERGY LANDSCAPES;
STATE MODELS;
PERSPECTIVE;
KINETICS;
D O I:
10.1038/s41467-023-41343-1
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics.
引用
收藏
页数:13
相关论文