A Unified Description of Salt Effects on the Liquid-Liquid Phase Separation of Proteins

被引:12
|
作者
Duan, Chao [1 ]
Wang, Rui [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
关键词
HOFMEISTER SERIES; EQUILIBRIUM; TRANSITION; BEHAVIOR; MACROMOLECULES; TEMPERATURE; POLYMERS; INVERSE; ANIONS;
D O I
10.1021/acscentsci.3c01372
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Protein aggregation via liquid-liquid phase separation (LLPS) is ubiquitous in nature and is intimately connected to many human diseases. Although it is widely known that the addition of salt has crucial impacts on the LLPS of proteins, full understanding of the salt effects remains an outstanding challenge. Here, we develop a molecular theory that systematically incorporates the self-consistent field theory for charged macromolecules into the solution thermodynamics. The electrostatic interaction, hydrophobicity, ion solvation, and translational entropy are included in a unified framework. Our theory fully captures the long-standing puzzles of the nonmonotonic salt concentration dependence and the specific ion effect. We find that proteins show salting-out at low salt concentrations due to ionic screening. The solubility follows the inverse Hofmeister series. In the high salt concentration regime, protein continues salting-out for small ions but turns to salting-in for larger ions, accompanied by the reversal of the Hofmeister series. We reveal that the solubility at high salt concentrations is determined by the competition between the solvation energy and translational entropy of the ion. Furthermore, we derive an analytical criterion for determining the boundary between the salting-in and salting-out regimes, which is in good agreement with experimental results for various proteins and salt ions.
引用
收藏
页码:460 / 468
页数:9
相关论文
共 50 条
  • [21] Liquid-Liquid phase separation in bacteria
    Guo, Dong
    Xiong, Yan
    Fu, Beibei
    Sha, Zhou
    Li, Bohao
    Wu, Haibo
    MICROBIOLOGICAL RESEARCH, 2024, 281
  • [22] Liquid-liquid phase separation in diseases
    Zhang, Xinyue
    Yuan, Lin
    Zhang, Wanlu
    Zhang, Yi
    Wu, Qun
    Li, Chunting
    Wu, Min
    Huang, Yongye
    MEDCOMM, 2024, 5 (07):
  • [23] Liquid-liquid phase separation in micropores
    Valiullin, R
    Vargas-Kruså, D
    Furó, I
    CURRENT APPLIED PHYSICS, 2004, 4 (2-4) : 370 - 372
  • [24] Liquid-Liquid Phase Separation in Biology
    Hyman, Anthony A.
    Weber, Christoph A.
    Juelicher, Frank
    ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, VOL 30, 2014, 30 : 39 - 58
  • [25] Liquid-Liquid Phase Separation in Disease
    Alberti, Simon
    Dormann, Dorothee
    ANNUAL REVIEW OF GENETICS, VOL 53, 2019, 53 : 171 - +
  • [26] Liquid-liquid phase separation in autophagy
    Noda, Nobuo N.
    Wang, Zheng
    Zhang, Hong
    JOURNAL OF CELL BIOLOGY, 2020, 219 (08):
  • [27] Prediction of Liquid-Liquid Phase Separation at the Dissolving Drug Salt Particle Surface
    Uekusa, Taiga
    Sugano, Kiyohiko
    MOLECULAR PHARMACEUTICS, 2023, 20 (06) : 3140 - 3149
  • [28] SALT EFFECTS IN LIQUID-LIQUID EQUILIBRIA
    DESAI, ML
    EISEN, EO
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1971, 16 (02): : 200 - &
  • [29] SALT EFFECTS IN LIQUID-LIQUID EQUILIBRIA
    EISEN, EO
    JOFFE, J
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1966, 11 (04): : 480 - &
  • [30] Solubility Parameters of Amino Acids on Liquid-Liquid Phase Separation and Aggregation of Proteins
    Nomoto, Akira
    Nishinami, Suguru
    Shiraki, Kentaro
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9