Dynamic Landscape Analysis for Constrained Multiobjective Optimization Problems

被引:1
作者
Alsouly, Hanan [1 ,2 ,3 ]
Kirley, Michael [1 ,2 ]
Munoz, Mario Andres [1 ,2 ]
机构
[1] Univ Melbourne, Sch Comp & Informat Syst, Melbourne, Vic, Australia
[2] ARC Ctr Optimisat Technol Integrated Methodol & A, Melbourne, Vic, Australia
[3] Imam Mohammad Ibn Saud Islamic Univ, Coll Comp & Informat Sci, Riyadh, Saudi Arabia
来源
ADVANCES IN ARTIFICIAL INTELLIGENCE, AI 2023, PT I | 2024年 / 14471卷
基金
澳大利亚研究理事会;
关键词
Constrained multiobjective optimization; Adaptive landscape analysis; Instance space analysis; Evolutionary algorithms; Constraint handling technique;
D O I
10.1007/978-981-99-8388-9_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Landscape analysis is a data-driven approach that involves sampling the search space of an optimization problem to generate a range of statistical features. These features serve to characterize the 'problem difficulty'. However, the computational costs associated with offline independent sampling can be excessive, and this approach often overlooks valuable information accumulated by the optimization algorithm. This paper aims to expand our understanding of landscape analysis in the domain of black-box constrained multiobjective optimization problems. We demonstrate the potential of leveraging optimization algorithm trajectories to measure landscape features. Our findings underscore the significance of utilizing landscape features as a means to approximate algorithm performance, particularly in cases involving new instances lacking a known reference set. Ultimately, our goal is to employ landscape analysis to dynamically adapt algorithm constraint handling techniques.
引用
收藏
页码:429 / 441
页数:13
相关论文
共 16 条
  • [1] Alsouly H., 2022, IEEE Trans. Evol. Comput.
  • [2] Performance indicators in multiobjective optimization
    Audet, Charles
    Bigeon, Jean
    Cartier, Dominique
    Le Digabel, Sebastien
    Salomon, Ludovic
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 292 (02) : 397 - 422
  • [3] A fast and elitist multiobjective genetic algorithm: NSGA-II
    Deb, K
    Pratap, A
    Agarwal, S
    Meyarivan, T
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) : 182 - 197
  • [4] Adaptive Landscape Analysis
    Jankovic, Anja
    Doerr, Carola
    [J]. PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 2032 - 2035
  • [5] Malan KM, 2015, IEEE C EVOL COMPUTAT, P1351, DOI 10.1109/CEC.2015.7257045
  • [6] A Survey of Advances in Landscape Analysis for Optimisation
    Malan, Katherine Mary
    [J]. ALGORITHMS, 2021, 14 (02)
  • [7] Mersmann O, 2011, GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, P829
  • [8] Muñoz MA, 2012, IEEE C EVOL COMPUTAT
  • [9] Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
  • [10] Realistic Constrained Multiobjective Optimization Benchmark Problems From Design
    Picard, Cyril
    Schiffmann, Jurg
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (02) : 234 - 246