Towards Accurate Microstructure Estimation via 3D Hybrid Graph Transformer

被引:0
作者
Yang, Junqing [1 ]
Jiang, Haotian [2 ]
Tassew, Tewodros [1 ]
Sun, Peng [1 ]
Ma, Jiquan [2 ]
Xia, Yong [1 ]
Yap, Pew-Thian [3 ,4 ]
Chen, Geng [1 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci & Engn, Natl Engn Lab Integrated Aerosp Ground Ocean Big, Xian, Peoples R China
[2] Heilongjiang Univ, Sch Comp Sci & Technol, Harbin, Peoples R China
[3] Univ N Carolina, Dept Radiol, Chapel Hill, NC USA
[4] Univ N Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC USA
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VIII | 2023年 / 14227卷
基金
中国国家自然科学基金; 美国国家卫生研究院;
关键词
Microstructure Imaging; Graph Neural Network; Transformer; 3D Spatial Domain; DIFFUSION;
D O I
10.1007/978-3-031-43993-3_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning has drawn increasing attention in microstructure estimation with undersampled diffusion MRI (dMRI) data. A representative method is the hybrid graph transformer (HGT), which achieves promising performance by integrating q-space graph learning and x-space transformer learning into a unified framework. However, this method overlooks the 3D spatial information as it relies on training with 2D slices. To address this limitation, we propose 3D hybrid graph transformer (3D-HGT), an advanced microstructure estimation model capable of making full use of 3D spatial information and angular information. To tackle the large computation burden associated with 3D x-space learning, we propose an efficient q-space learning model based on simplified graph neural networks. Furthermore, we propose a 3D x-space learning module based on the transformer. Extensive experiments on data from the human connectome project show that our 3D-HGT outperforms state-of-the-art methods, including HGT, in both quantitative and qualitative evaluations.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 26 条
  • [1] Ba JL, 2016, arXiv
  • [2] Hybrid Graph Transformer for Tissue Microstructure Estimation with Undersampled Diffusion MRI Data
    Chen, Geng
    Jiang, Haotian
    Liu, Jiannan
    Ma, Jiquan
    Cui, Hui
    Xia, Yong
    Yap, Pew-Thian
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT I, 2022, 13431 : 113 - 122
  • [3] Chen Geng, 2020, Med Image Comput Comput Assist Interv, V12267, P280, DOI 10.1007/978-3-030-59728-3_28
  • [4] Denoising of Diffusion MRI Data via Graph Framelet Matching in x-q Space
    Chen, Geng
    Dong, Bin
    Zhang, Yong
    Lin, Weili
    Shen, Dinggang
    Yap, Pew-Thian
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (12) : 2838 - 2848
  • [5] XQ-SR: Joint x-q space super-resolution with application to infant diffusion MRI
    Chen, Geng
    Dong, Bin
    Zhang, Yong
    Lin, Weili
    Shen, Dinggang
    Yap, Pew-Thian
    [J]. MEDICAL IMAGE ANALYSIS, 2019, 57 : 44 - 55
  • [6] Noise reduction in diffusion MRI using non-local self-similar information in joint x - q space
    Chen, Geng
    Wu, Yafeng
    Shen, Dinggang
    Yap, Pew-Thian
    [J]. MEDICAL IMAGE ANALYSIS, 2019, 53 : 79 - 94
  • [7] VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images
    Chen, Hao
    Dou, Qi
    Yu, Lequan
    Qin, Jing
    Heng, Pheng-Ann
    [J]. NEUROIMAGE, 2018, 170 : 446 - 455
  • [8] Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data
    Daducci, Alessandro
    Canales-Rodriguez, Erick J.
    Zhang, Hui
    Dyrby, Tim B.
    Alexander, Daniel C.
    Thiran, Jean-Philippe
    [J]. NEUROIMAGE, 2015, 105 : 32 - 44
  • [9] Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks
    Dou, Qi
    Chen, Hao
    Yu, Lequan
    Zhao, Lei
    Qin, Jing
    Wang, Defeng
    Mok, Vincent C. T.
    Shi, Lin
    Heng, Pheng-Ann
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1182 - 1195
  • [10] U-Net: deep learning for cell counting, detection, and morphometry
    Falk, Thorsten
    Mai, Dominic
    Bensch, Robert
    Cicek, Oezguen
    Abdulkadir, Ahmed
    Marrakchi, Yassine
    Boehm, Anton
    Deubner, Jan
    Jaeckel, Zoe
    Seiwald, Katharina
    Dovzhenko, Alexander
    Tietz, Olaf
    Dal Bosco, Cristina
    Walsh, Sean
    Saltukoglu, Deniz
    Tay, Tuan Leng
    Prinz, Marco
    Palme, Klaus
    Simons, Matias
    Diester, Ilka
    Brox, Thomas
    Ronneberger, Olaf
    [J]. NATURE METHODS, 2019, 16 (01) : 67 - +