Decarbonizing Food Waste Treatment through Anaerobic Codigestion with Yard Waste: Energy, Engineering, Economic, and Environmental Aspects

被引:6
作者
Negi, Suraj [1 ]
Pan, Shu-Yuan [1 ,2 ]
Shiau, Yo-Jin [1 ,2 ]
机构
[1] Natl Taiwan Univ, Dept Bioenvironm Syst Engn, Taipei City 106, Taiwan
[2] Natl Taiwan Univ, Agr Net Zero Carbon Technol & Management Innovat R, Taipei City 10617, Taiwan
来源
ACS ES&T ENGINEERING | 2023年 / 3卷 / 10期
关键词
kinetics; anaerobic degradability; cost analysis; life cycle assessment; circular economy; CO-DIGESTION; MANAGEMENT; STRATEGIES; INDUSTRIAL; CONVERSION; METHANE;
D O I
10.1021/acsestengg.3c00120
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents the design and analysis of an anaerobiccodigestion(AcD) system to replace the existing composting system for food waste(FW) and yard waste (YW) treatment on a university campus. By combinationof kinetic models, anaerobic degradability analysis, cost analysis,and life cycle assessment (LCA), a comprehensive energy, engineering,economic, and environmental approach is applied to achieve FW decarbonization.The optimal AcD ratio of FW:YW (3:1) demonstrates a CH4 production rate of 38.2 & PLUSMN; 0.7 mL/g VS/day, with a biomethanationpotential of 0.97 and sludge activity of 100%. The economic analysisreveals a discounted payback period of approximately 2.6 years overa 10 year project lifetime, demonstrating the feasibility and financialviability of the AcD system. Furthermore, the LCA comparison betweenAcD and composting shows a significant carbon emissions reductionof approximately 68% (& SIM;146 kg CO2-eq/t-FW lower)for AcD, resulting in an annual reduction of 32 tonnes of CO2-eq if implemented for the total FW production (219 tonnes per year)on the campus. Lastly, the study proposes potential pathways for achievingcarbon neutrality in decentralized AcD plants, providing directionsfor future research.
引用
收藏
页码:1495 / 1503
页数:9
相关论文
共 50 条
[41]  
Van Huis A., 2013, FAO Forestry Paper 171
[42]   The ecoinvent database version 3 (part I): overview and methodology [J].
Wernet, Gregor ;
Bauer, Christian ;
Steubing, Bernhard ;
Reinhard, Jurgen ;
Moreno-Ruiz, Emilia ;
Weidema, Bo .
INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2016, 21 (09) :1218-1230
[43]  
World Food Programme, 5 facts about food waste and hunger
[44]   On-site CO2 bio-sequestration in anaerobic digestion: Current status and prospects [J].
Xu, Suyun ;
Qiao, Zihao ;
Luo, Liwen ;
Sun, Yongqi ;
Wong, Jonathan Woon-Chung ;
Geng, Xueyu ;
Ni, Jing .
BIORESOURCE TECHNOLOGY, 2021, 332
[45]   China's food loss and waste embodies increasing environmental impacts [J].
Xue, Li ;
Liu, Xiaojie ;
Lu, Shijun ;
Cheng, Guangyan ;
Hu, Yuanchao ;
Liu, Junguo ;
Dou, Zhengxia ;
Cheng, Shengkui ;
Liu, Gang .
NATURE FOOD, 2021, 2 (07) :519-528
[46]   Missing Food, Missing Data? A Critical Review of Global Food Losses and Food Waste Data [J].
Xue, Li ;
Liu, Gang ;
Parfitt, Julian ;
Liu, Xiaojie ;
Van Herpen, Erica ;
Stenmarck, Asa ;
O'Connor, Clementine ;
Ostergren, Karin ;
Cheng, Shengkui .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (12) :6618-6633
[47]  
Yescombe E.R., 2013, Principles of Project Finance
[48]   Bio-energy conversion performance, biodegradability, and kinetic analysis of different fruit residues during discontinuous anaerobic digestion [J].
Zhao, Chen ;
Yan, Hu ;
Liu, Yan ;
Huang, Yan ;
Zhang, Ruihong ;
Chen, Chang ;
Liu, Guangqing .
WASTE MANAGEMENT, 2016, 52 :295-301
[49]   Climate Change Impact of the Development in Household Waste Management in China [J].
Zhao, Yan ;
Chang, Huimin ;
Liu, Xiao ;
Bisinella, Valentina ;
Christensen, Thomas H. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (12) :8993-9002
[50]   Biogas upgrading and energy storage via electromethanogenesis using intact anaerobic granular sludge as biocathode [J].
Zhou, Huihui ;
Xing, Defeng ;
Xu, Mingyi ;
Su, Yanyan ;
Zhang, Yifeng .
APPLIED ENERGY, 2020, 269