Fast optimization of computer-generated holograms using conjugate gradient

被引:1
作者
Wu, Yang [1 ]
Lei, Xiangli [1 ]
Wang, Jun [1 ]
Chen, Ni [2 ]
机构
[1] Sichuan Univ, Sch Elect & Informat Engn, Chengdu 610065, Peoples R China
[2] Univ Arizona, James C Wyant Coll Opt Sci, 1630E Univ Blvd, Tucson, AZ 85721 USA
关键词
Holographic display; Computer-generated hologram; Conjugate gradient; Gradient descend algorithm; GERCHBERG-SAXTON ALGORITHM; PHASE-ONLY HOLOGRAM; PROJECTION; DISPLAY; LIGHT; IMAGE;
D O I
10.1016/j.displa.2023.102461
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Holographic display, as an ideal three-dimensional (3D) display method, can provide a realistic stereo -perception sense, and is expected to be used in the next generation of augmented reality (AR) prototypes without complex optical devices. While holographic 3D displays have been proposed in the past decades, high-quality holographic reconstructed images have always relied on well-designed generation algorithms, and it is still a challenge to obtain an accurate phase profile fast. In this work, we utilize a first-order optimization algorithm to optimize the phase profile using the conjugate gradient direction instead of the steepest gradient direction to update the phase parameters. We validate this proposed method by comparing the current widely used stochastic gradient method and the wirtinger holography method. The simulation and experimental results illustrate the superiority of the proposed method, which can achieve faster optimization with the same quality metrics.
引用
收藏
页数:7
相关论文
共 41 条
[1]  
[Anonymous], 2014, J. Opt. Photonics
[2]   Compact full-color holographic 3-D display based on undersampled computer-generated holograms and oblique projection imaging [J].
Cao, Hong-Kun ;
Hwang, Yong-Seok ;
Kim, Eun-Soo ;
Jin, Xin .
OPTICS EXPRESS, 2020, 28 (24) :35910-35926
[3]   Wirtinger Holography for Near-Eye Displays [J].
Chakravarthula, Praneeth ;
Peng, Yifan ;
Kollin, Joel ;
Fuchs, Henry ;
Heide, Felix .
ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (06)
[4]   Speckle reduced lensless holographic projection from phase-only computer-generated hologram [J].
Chang, Chenliang ;
Qi, Yijun ;
Wu, Jun ;
Xia, Jun ;
Nie, Shouping .
OPTICS EXPRESS, 2017, 25 (06) :6568-6580
[5]   Waveguide-based near-eye display with dual-channel exit pupil expander [J].
Chen, Chao Ping ;
Mi, Lantian ;
Zhang, Wenbo ;
Ye, Jiaxun ;
Li, Gang .
DISPLAYS, 2021, 67
[6]   Phase hologram optimization with bandwidth constraint strategy for speckle-free optical reconstruction [J].
Chen, Lizhi ;
Tian, Songzhi ;
Zhang, Hao ;
Cao, Liangcai ;
Jin, Guofan .
OPTICS EXPRESS, 2021, 29 (08) :11645-11663
[7]   Neural 3D Holography: Learning Accurate Wave Propagation Models for 3D Holographic Virtual and Augmented Reality Displays [J].
Choi, Suyeon ;
Gopakumar, Manu ;
Peng, Yifan ;
Kim, Jonghyun ;
Wetzstein, Gordon .
ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (06)
[8]   Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays [J].
Deng, Yuanbo ;
Chu, Daping .
SCIENTIFIC REPORTS, 2017, 7
[9]   Formulas of partially spatial coherent light and design algorithm for computer-generated holograms [J].
Duan, Junyi ;
Liu, Juan ;
Hao, Bining ;
Zhao, Tao ;
Gao, Qiankun ;
Duan, Xinhui .
OPTICS EXPRESS, 2018, 26 (17) :22284-22295
[10]   DeepCGH: 3D computer-generated holography using deep learning [J].
Eybposh, M. Hossein ;
Caira, Nicholas W. ;
Atisa, Mathew ;
Chakravarthula, Praneeth ;
Pegard, Nicolas C. .
OPTICS EXPRESS, 2020, 28 (18) :26636-26650