Using a Recurrent Neural Network To Inform the Use of Prostate-specific Antigen (PSA) and PSA Density for Dynamic Monitoring of the Risk of Prostate Cancer Progression on Active Surveillance

被引:4
作者
Sushentsev, Nikita [1 ,2 ,10 ]
Abrego, Luis [3 ]
Colarieti, Anna [1 ,2 ,4 ]
Sanmugalingam, Nimalan [1 ,2 ]
Stanzione, Arnaldo [1 ,2 ,5 ]
Zawaideh, Jeries Paolo [1 ,2 ,6 ]
Caglic, Iztok [1 ,2 ]
Zaikin, Alexey [3 ,7 ]
Blyuss, Oleg [8 ,9 ]
Barrett, Tristan [1 ,2 ]
机构
[1] Addenbrookes Hosp, Dept Radiol, Cambridge, England
[2] Univ Cambridge, Cambridge, England
[3] UCL, Inst Womens Hlth, Dept Womens Canc, London, England
[4] IRCCS Policlin San Donato, Unit Radiol, Milan, Italy
[5] Univ Naples Federico II, Dept Adv Biomed Sci, Naples, Italy
[6] IRCCS Osped Policlin San Martino, Dept Radiol, Genoa, Italy
[7] UCL, Dept Math, London, England
[8] Queen Mary Univ London, Wolfson Inst Populat Hlth, London, England
[9] Sechenov First Moscow State Med Univ, Dept Paediat & Paediat Infect Dis, Moscow, Russia
[10] Univ Cambridge, Dept Radiol, Sch Clin Med, Cambridge Biomed Campus, Cambridge CB2 0QQ, England
来源
EUROPEAN UROLOGY OPEN SCIENCE | 2023年 / 52卷
基金
英国工程与自然科学研究理事会;
关键词
Prostate cancer; Active surveillance; Prostate -specific antigen; Predictive modelling; Longitudinal data; Artificial intelligence; Recurrent neural networks;
D O I
10.1016/j.euros.2023.04.002
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
The global uptake of prostate cancer (PCa) active surveillance (AS) is steadily increasing. While prostate-specific antigen density (PSAD) is an important baseline predictor of PCa progression on AS, there is a scarcity of recommendations on its use in follow-up. In particular, the best way of measuring PSAD is unclear. One approach would be to use the baseline gland volume (BGV) as a denominator in all calculations throughout AS (nonadaptive PSAD, PSADNA), while another would be to remeasure gland volume at each new magnetic resonance imaging scan (adaptive PSAD, PSADA). In addition, little is known about the predictive value of serial PSAD in comparison to PSA. We applied a long short-term memory recurrent neural network to an AS cohort of 332 patients and found that serial PSADNA significantly outperformed both PSADA and PSA for follow-up prediction of PCa progression because of its high sensitivity. Importantly, while PSADNA was superior in patients with smaller glands (BGV < 55 ml), serial PSA was better in men with larger prostates of > 55 ml.Patient summary: Repeat measurements of prostate-specific antigen (PSA) and PSA density (PSAD) are the mainstay of active surveillance in prostate cancer. Our study suggests that in patients with a prostate gland of 55 ml or smaller, PSAD measurements are a better predictor of tumour progression, whereas men with a larger gland may benefit more from PSA monitoring. (c) 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association of Urology. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/).
引用
收藏
页码:36 / 39
页数:4
相关论文
共 10 条
  • [1] Magnetic Resonance Imaging-based Monitoring in Active Surveillance: Are We Ready To Jump on the Bandwagon?
    Bangma, Chris H.
    Schoots, Ivo G.
    [J]. EUROPEAN UROLOGY OPEN SCIENCE, 2022, 38 : 49 - 51
  • [2] MRI-derived PRECISE scores for predicting pathologically-confirmed radiological progression in prostate cancer patients on active surveillance
    Caglic, Iztok
    Sushentsev, Nikita
    Gnanapragasam, Vincent J.
    Sala, Evis
    Shaida, Nadeem
    Koo, Brendan C.
    Kozlov, Vasily
    Warren, Anne Y.
    Kastner, Christof
    Barrett, Tristan
    [J]. EUROPEAN RADIOLOGY, 2021, 31 (05) : 2696 - 2705
  • [3] Contemporary national trends in prostate cancer risk profile at diagnosis
    Fletcher, Sean A.
    Von Landenberg, Nicolas
    Cole, Alexander P.
    Gild, Philipp
    Choueiri, Toni K.
    Lipsitz, Stuart R.
    Trinh, Quoc-Dien
    Kibel, Adam S.
    [J]. PROSTATE CANCER AND PROSTATIC DISEASES, 2020, 23 (01) : 81 - 87
  • [4] Natural history of prostate cancer on active surveillance: stratification by MRI using the PRECISE recommendations in a UK cohort
    Giganti, Francesco
    Stabile, Armando
    Stavrinides, Vasilis
    Osinibi, Elizabeth
    Retter, Adam
    Orczyk, Clement
    Panebianco, Valeria
    Trock, Bruce J.
    Freeman, Alex
    Haider, Aiman
    Punwani, Shonit
    Allen, Clare
    Kirkham, Alex
    Emberton, Mark
    Moore, Caroline M.
    [J]. EUROPEAN RADIOLOGY, 2021, 31 (03) : 1644 - 1655
  • [5] Best Current Practice and Research Priorities in Active Surveillance for Prostate Cancer-A Report of a Movember International Consensus Meeting
    Moore, Caroline M.
    King, Lauren E.
    Withington, John
    Amin, Mahul B.
    Andrews, Mark
    Briers, Erik
    Chen, Ronald C.
    Chinegwundoh, Francis I.
    Cooperberg, Matthew R.
    Crowe, Jane
    Finelli, Antonio
    Fitch, Margaret I.
    Frydenberg, Mark
    Giganti, Francesco
    Haider, Masoom A.
    Freeman, John
    Gallo, Joseph
    Gibbs, Stephen
    Henry, Anthony
    James, Nicholas
    Kinsella, Netty
    Lam, Thomas B. L.
    Lichty, Mark
    Loeb, Stacy
    Mahal, Brandon A.
    Mastris, Ken
    Mitra, Anita V.
    Merriel, Samuel W. D.
    van der Kwast, Theodorus
    Van Hemelrijck, Mieke
    Palmer, Nynikka R.
    Paterson, Catherine C.
    Roobol, Monique J.
    Segal, Phillip
    Schraidt, James A.
    Short, Camille E.
    Siddiqui, M. Minhaj
    Tempany, Clare M. C.
    Villers, Arnaud
    Wolinsky, Howard
    MacLennan, Steven
    [J]. EUROPEAN UROLOGY ONCOLOGY, 2023, 6 (02): : 160 - 182
  • [6] Reporting Magnetic Resonance Imaging in Men on Active Surveillance for Prostate Cancer: The PRECISE Recommendations-A Report of a European School of Oncology Task Force
    Moore, Caroline M.
    Giganti, Francesco
    Albertsen, Peter
    Allen, Clare
    Bangma, Chris
    Briganti, Alberto
    Carroll, Peter
    Haider, Masoom
    Kasivisvanathan, Veeru
    Kirkham, Alex
    Klotz, Laurence
    Ouzzane, Adil
    Padhani, Anwar R.
    Panebianco, Valeria
    Pinto, Peter
    Puech, Philippe
    Rannikko, Antti
    Renard-Penna, Raphaele
    Touijer, Karim
    Turkbey, Baris
    van Poppel, Heinrik
    Valdagni, Riccardo
    Walz, Jochen
    Schoots, Ivo
    [J]. EUROPEAN UROLOGY, 2017, 71 (04) : 648 - 655
  • [7] Mapping PSA density to outcome of MRI-based active surveillance for prostate cancer through joint longitudinal-survival models
    Stavrinides, Vasilis
    Papageorgiou, Georgios
    Danks, Dominic
    Giganti, Francesco
    Pashayan, Nora
    Trock, Bruce
    Freeman, Alex
    Hu, Yipeng
    Whitaker, Hayley
    Allen, Clare
    Kirkham, Alex
    Punwani, Shonit
    Sonn, Geoffrey
    Barratt, Dean
    Emberton, Mark
    Moore, Caroline M.
    [J]. PROSTATE CANCER AND PROSTATIC DISEASES, 2021, 24 (04) : 1028 - 1031
  • [8] Time series radiomics for the prediction of prostate cancer progression in patients on active surveillance
    Sushentsev, Nikita
    Rundo, Leonardo
    Abrego, Luis
    Li, Zonglun
    Nazarenko, Tatiana
    Warren, Anne Y.
    Gnanapragasam, Vincent J.
    Sala, Evis
    Zaikin, Alexey
    Barrett, Tristan
    Blyuss, Oleg
    [J]. EUROPEAN RADIOLOGY, 2023, 33 (06) : 3792 - 3800
  • [9] Turkbey B, 2019, EUR UROL, V76, P340, DOI 10.1016/j.eururo.2019.02.033
  • [10] Measurement of Prostate Volume with MRI (A Guide for the Perplexed): Biproximate Method with Analysis of Precision and Accuracy
    Wasserman, Neil F.
    Niendorf, Eric
    Spilseth, Benjamin
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)