Construction of 3D copper-chitosan-gas diffusion layer electrode for highly efficient CO2 electrolysis to C2+ alcohols

被引:57
作者
Bi, Jiahui [1 ,2 ]
Li, Pengsong [1 ,2 ]
Liu, Jiyuan [1 ,2 ]
Jia, Shuaiqiang [3 ]
Wang, Yong [1 ,2 ]
Zhu, Qinggong [1 ,2 ]
Liu, Zhimin [1 ,2 ]
Han, Buxing [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, CAS Res Educ Ctr Excellence Mol Sci, CAS Res Educ Ctr Carbon Neutral Chem, Inst Chem,Beijing Natl Lab Mol Sci,CAS Key Lab Col, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Chem & Chem Engn, Beijing 100049, Peoples R China
[3] East China Normal Univ Shanghai, Sch Chem & Mol Engn, Shanghai Key Lab Green Chem & Chem Proc, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
REDUCTION; ELECTROREDUCTION; NANOPARTICLES; CONVERSION;
D O I
10.1038/s41467-023-38524-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-rate electrolysis of CO2 to C2+ alcohols is of particular interest, but the performance remains far from the desired values to be economically feasible. Coupling gas diffusion electrode (GDE) and 3D nanostructured catalysts may improve the efficiency in a flow cell of CO2 electrolysis. Herein, we propose a route to prepare 3D Cu-chitosan (CS)-GDL electrode. The CS acts as a "transition layer" between Cu catalyst and the GDL. The highly interconnected network induces growth of 3D Cu film, and the as-prepared integrated structure facilitates rapid electrons transport and mitigates mass diffusion limitations in the electrolysis. At optimum conditions, the C2+ Faradaic efficiency (FE) can reach 88.2% with a current density (geometrically normalized) as high as 900 mA cm(-2) at the potential of -0.87 V vs. reversible hydrogen electrode (RHE), of which the C2+ alcohols selectivity is 51.4% with a partial current density of 462.6 mA cm(-2), which is very efficient for C2+ alcohols production. Experimental and theoretical study indicates that CS induces growth of 3D hexagonal prismatic Cu microrods with abundant Cu (111)/Cu (200) crystal faces, which are favorable for the alcohol pathway. Our work represents a novel example to design efficient GDEs for electrocatalytic CO2 reduction (CO2RR). Carbon dioxide conversion to C2+ alcohols is of particular interest, but the needed performance for industrial applicability remains challenging. Here the authors construct a 3D copper chitosan-gas diffusion layer electrode to achieve highly-efficient conversion to C2+ alcohols at high current density.
引用
收藏
页数:10
相关论文
共 50 条
[11]   Efficient Electrocatalytic CO2 Reduction to C2+ Alcohols at Defect-Site-Rich Cu Surface [J].
Gu, Zhengxiang ;
Shen, Hao ;
Chen, Zheng ;
Yang, Yaoyue ;
Yang, Chao ;
Ji, Yali ;
Wang, Yuhang ;
Zhu, Chan ;
Liu, Junlang ;
Li, Jun ;
Sham, Tsun-Kong ;
Xu, Xin ;
Zheng, Gengfeng .
JOULE, 2021, 5 (02) :429-440
[12]   Highly Efficient CO2 Electroreduction to Methanol through Atomically Dispersed Sn Coupled with Defective CuO Catalysts [J].
Guo, Weiwei ;
Liu, Shoujie ;
Tan, Xingxing ;
Wu, Ruizhi ;
Yan, Xupeng ;
Chen, Chunjun ;
Zhu, Qinggong ;
Zheng, Lirong ;
Ma, Jingyuan ;
Zhang, Jing ;
Huang, Yuying ;
Sun, Xiaofu ;
Han, Buxing .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (40) :21979-21987
[13]   Atomic Indium Catalysts for Switching CO2 Electroreduction Products from Formate to CO [J].
Guo, Weiwei ;
Tan, Xingxing ;
Bi, Jiahui ;
Xu, Liang ;
Yang, Dexin ;
Chen, Chunjun ;
Zhu, Qinggong ;
Ma, Jun ;
Tayal, Akhil ;
Ma, Jingyuan ;
Huang, Yuying ;
Sun, Xiaofu ;
Liu, Shoujie ;
Han, Buxing .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (18) :6877-6885
[14]   Triphase Photocatalytic CO2 Reduction over Silver-Decorated Titanium Oxide at a Gas-Water Boundary [J].
Huang, Huining ;
Shi, Run ;
Li, Zhenhua ;
Zhao, Jiaqi ;
Su, Chenliang ;
Zhang, Tierui .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (17)
[15]   Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate [J].
Huang, HZ ;
Yang, XR .
BIOMACROMOLECULES, 2004, 5 (06) :2340-2346
[16]   Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction [J].
Jiang, Kun ;
Sandberg, Robert B. ;
Akey, Austin J. ;
Liu, Xinyan ;
Bell, David C. ;
Norskov, Jens K. ;
Chan, Karen ;
Wang, Haotian .
NATURE CATALYSIS, 2018, 1 (02) :111-119
[17]   Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces [J].
Li, Fengwang ;
Li, Yuguang C. ;
Wang, Ziyun ;
Li, Jun ;
Nam, Dae-Hyun ;
Lum, Yanwei ;
Luo, Mingchuan ;
Wang, Xue ;
Ozden, Adnan ;
Hung, Sung-Fu ;
Chen, Bin ;
Wang, Yuhang ;
Wicks, Joshua ;
Xu, Yi ;
Li, Yilin ;
Gabardo, Christine M. ;
Dinh, Cao-Thang ;
Wang, Ying ;
Zhuang, Tao-Tao ;
Sinton, David ;
Sargent, Edward H. .
NATURE CATALYSIS, 2020, 3 (01) :75-82
[18]   Efficient electrocatalytic CO2 reduction on a three-phase interface [J].
Li, Jun ;
Chen, Guangxu ;
Zhu, Yangying ;
Liang, Zheng ;
Pei, Allen ;
Wu, Chun-Lan ;
Wang, Hongxia ;
Lee, Hye Ryoung ;
Liu, Kai ;
Chu, Steven ;
Cui, Yi .
NATURE CATALYSIS, 2018, 1 (08) :592-600
[19]   In situ dual doping for constructing efficient CO2-to-methanol electrocatalysts [J].
Li, Pengsong ;
Bi, Jiahui ;
Liu, Jiyuan ;
Zhu, Qinggong ;
Chen, Chunjun ;
Sun, Xiaofu ;
Zhang, Jianling ;
Han, Buxing .
NATURE COMMUNICATIONS, 2022, 13 (01)
[20]   Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers [J].
Li, Xiaodong ;
Sun, Yongfu ;
Xu, Jiaqi ;
Shao, Yanjie ;
Wu, Ju ;
Xu, Xiaoliang ;
Pan, Yang ;
Ju, Huanxin ;
Zhu, Junfa ;
Xie, Yi .
NATURE ENERGY, 2019, 4 (08) :690-699